相关习题
 0  263157  263165  263171  263175  263181  263183  263187  263193  263195  263201  263207  263211  263213  263217  263223  263225  263231  263235  263237  263241  263243  263247  263249  263251  263252  263253  263255  263256  263257  263259  263261  263265  263267  263271  263273  263277  263283  263285  263291  263295  263297  263301  263307  263313  263315  263321  263325  263327  263333  263337  263343  263351  266669 

科目: 来源: 题型:

【题目】在正方体ABCDA1B1C1D1中,PQ分别为棱BC和棱CC1的中点,则下列说法正确的是( )

A.BC1//平面AQP

B.平面APQ截正方体所得截面为等腰梯形

C.A1D⊥平面AQP

D.异面直线QPA1C1所成的角为60°

查看答案和解析>>

科目: 来源: 题型:

【题目】下列说法正确的是( )

A.将一组数据中的每个数据都乘以同一个非零常数a后,方差也变为原来的a

B.设有一个回归方程,变量x增加1个单位时,y平均减少5个单位

C.线性相关系数r越大,两个变量的线性相关性越强;反之,线性相关性越弱

D.在某项测量中,测量结果ξ服从正态分布N1σ2)(σ0),则Pξ1)=0.5

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆在左右焦点分别为动点在椭圆的周长为6,且面积的最大值为.

(1)求的方程

(2)设直线的另一个交点为分别作直线的垂线垂足为轴的交点为.的面积成等差数列求直线斜率的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点F为抛物线Ey22pxp0)的焦点,点A2m)在抛物线E上,且|AF|3

1)求抛物线E的方程;

2)已知点G(﹣10),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,其中实数a为常数.

(I)a=-l时,确定的单调区间:

(II)f(x)在区间e为自然对数的底数)上的最大值为-3,求a的值;

(Ⅲ)a=-1时,证明

查看答案和解析>>

科目: 来源: 题型:

【题目】为了研究某学科成绩是否与学生性别有关,采用分层抽样的方法,从高二年级抽取了名男生和名女生的该学科成绩,得到如图所示男生成绩的频率分布直方图和女生成绩的茎叶图,规定分以上为优分(含分).

(1)(i)请根据图示,将2×2列联表补充完整;

优分

非优分

总计

男生

女生

总计

50

ii)据列联表判断,能否在犯错误概率不超过的前提下认为学科成绩与性别有关

(2)将频率视作概率,从高二年级该学科成绩中任意抽取名学生的成绩,求成绩为优分人数的分布列与数学期望.

参考公式:

参考数据:

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】如图是某公司一种产品的日销售量(单位:百件)关于日最高气温(单位:)的散点图.

数据:

13

15

19

20

21

26

28

30

18

36

1)请剔除一组数据,使得剩余数据的线性相关性最强,并用剩余数据求日销售量关于日最高气温的线性回归方程

2)根据现行《重庆市防暑降温措施管理办法》.若气温超过36度,职工可享受高温补贴.已知某日该产品的销售量为53.1,请用(1)中求出的线性回归方程判断该公司员工当天是否可享受高温补贴?

附:.

查看答案和解析>>

科目: 来源: 题型:

【题目】某县共有90间农村淘宝服务站,随机抽取5间,统计元旦期间的网购金额(单位:万元)的茎叶图如图所示,其中茎为十位数,叶为个位数.若网购金额(单位:万元)不小于18的服务站定义为优秀服务站,其余为非优秀服务站.从随机抽取的5间服务站中再任取2间作网购商品的调查,则恰有1间是优秀服务站的概率为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱锥平面平面为棱上的一点为棱的中点为棱上的一点平面是边长为4的正三角形,.

(1)求证:平面平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】,函数.

(I)证明:当时,对任意实数,直线总是曲线的切线;

(Ⅱ)若存在实数,使得对任意,都有,求实数的最小值.

查看答案和解析>>

同步练习册答案