相关习题
 0  263189  263197  263203  263207  263213  263215  263219  263225  263227  263233  263239  263243  263245  263249  263255  263257  263263  263267  263269  263273  263275  263279  263281  263283  263284  263285  263287  263288  263289  263291  263293  263297  263299  263303  263305  263309  263315  263317  263323  263327  263329  263333  263339  263345  263347  263353  263357  263359  263365  263369  263375  263383  266669 

科目: 来源: 题型:

【题目】洛萨科拉茨Collatz是德国数学家,他在1937年提出了一个著名的猜想:任给一个正整数n,如果n是偶数,就将它减半;如果n是奇数,则将它乘3加,不断重复这样的运算,经过有限步后,一定可以得到如初始正整数为6,按照上述变换规则,我们得到一个数列:6,3,10,5,16,8,4,2,对科拉茨猜想,目前谁也不能证明,更不能否定现在请你研究:如果对正整数首项按照上述规则施行变换注:1可以多次出现后的第八项为1,则n的所有可能的取值为______

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,曲线为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线的方程为:

当极点到直线的距离为时,求直线的直角坐标方程;

若直线与曲线有两个不同的交点,求实数的取值范围

查看答案和解析>>

科目: 来源: 题型:

【题目】为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地

区调查了500位老年人,结果如下:

需要

40

30

不需要

160

270

(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;

(2)能否在犯错误的概率不超过0.01的前提下认为该地区的老年人需要志愿者提供帮助与性别有

关?

附:

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数为自然对数的底数.

(1)若曲线在点处的切线方程为,求实数的值;

(2)当时,若存在,使成立,求实数的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥中,底面ABCD

求证:平面PAC

若侧棱PC上的点F满足,求三棱锥的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】某小组共有五位同学,他们的身高(单位:米)以及体重指标(单位:千克/2

如下表所示:


A

B

C

D

E

身高

1.69

1.73

1.75

1.79

1.82

体重指标

19.2

25.1

18.5

23.3

20.9

(Ⅰ)从该小组身高低于的同学中任选人,求选到的人身高都在以下的概率

(Ⅱ)从该小组同学中任选人,求选到的人的身高都在以上且体重指标都在中的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】本小题满分12分,1小问7分,2小问5分

设函数

1处取得极值,确定的值,并求此时曲线在点处的切线方程;

2上为减函数,求的取值范围。

查看答案和解析>>

科目: 来源: 题型:

【题目】洛萨科拉茨Collatz是德国数学家,他在1937年提出了一个著名的猜想:任给一个正整数n,如果n是偶数,就将它减半;如果n是奇数,则将它乘3加,不断重复这样的运算,经过有限步后,一定可以得到如初始正整数为6,按照上述变换规则,我们得到一个数列:6,3,10,5,16,8,4,2,对科拉茨猜想,目前谁也不能证明,更不能否定现在请你研究:如果对正整数首项按照上述规则施行变换注:1可以多次出现后的第八项为1,则n的所有可能的取值为______

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

求函数图象上一点处的切线方程.

若方程内有两个不等实根,求实数a的取值范围为自然对数的底数

求证,且

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,以为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,曲线的极坐标方程为,曲线的极坐标方程为.

1)求的直角坐标方程;

2)若的交于点,交于两点,求的面积.

查看答案和解析>>

同步练习册答案