相关习题
 0  263230  263238  263244  263248  263254  263256  263260  263266  263268  263274  263280  263284  263286  263290  263296  263298  263304  263308  263310  263314  263316  263320  263322  263324  263325  263326  263328  263329  263330  263332  263334  263338  263340  263344  263346  263350  263356  263358  263364  263368  263370  263374  263380  263386  263388  263394  263398  263400  263406  263410  263416  263424  266669 

科目: 来源: 题型:

【题目】已知椭圆的长轴长为4,离心率为

(1)求椭圆的标准方程;

(2)过作动直线交椭圆两点,为平面上一点,直线的斜率分别为,且满足,问点是否在某定直线上运动,若存在,求出该直线方程;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,已知曲线C的参数方程为为参数,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系.

(1)求曲线C的极坐标方程;

(2)设直线l的极坐标方程为,若直线l与曲线C交于M,N两点,且,求直线l的直角坐标方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆E的离心率为,且过点

求椭圆E的方程;

设直线与椭圆E交于AB两点,与x轴、y轴分别交于CD两点CDAB之间或同时在AB之外问:是否存在定值k,使得的面积与的面积总相等,若存在,求k的值,并求出实数m取值范围;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】;②;③为常数)这个条件中选择个条件,补全下列试题后完成解答,设等差数列的前项和为,若数列的各项均为正整数,且满足公差____________.

1)求数列的通项公式;

2)令,求数列的前项的和.

查看答案和解析>>

科目: 来源: 题型:

【题目】某市为了了解民众对开展创建文明城市工作以来的满意度,随机调查了40名群众,并将他们随机分成AB两组,每组20人,A组群众给第一阶段的创文工作评分,B组群众给第二阶段的创文工作评分,根据两组群众的评分绘制了如下茎叶图:

根据茎叶图比较群众对两个阶段创文工作满意度评分的平均值及集中程度不要求计算出具体值,给出结论即可

根据群众的评分将满意度从低到高分为三个等级:

满意度评分

低于70

70分到89

不低于90

满意度等级

不满意

满意

非常满意

假设两组群众的评价结果相互独立,由频率估计概率,求创文工作第二阶段的民众满意度等级高于第一阶段的概率;

从这40名群众中随机抽取2人,记X表示满意度等级为“非常满意”的群众人数,求X的分布列与数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知是边长为6的等边三角形,点DE分别是边ABAC上的点,且满足,如图,将沿DE折成四棱锥,且有平面平面BCED

求证:平面BCED

的中点为M,求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】把分别写有12345的五张卡片全部分给甲、乙、丙三个人,每人至少一张,且若分得的卡片超过一张,则必须是连号,那么不同的分法种数为______用数字作答

查看答案和解析>>

科目: 来源: 题型:

【题目】椭圆的离心率是,过点做斜率为的直线,椭圆与直线交于两点,当直线垂直于轴时

(Ⅰ)求椭圆的方程;

(Ⅱ)当变化时,在轴上是否存在点,使得是以为底的等腰三角形,若存在求出的取值范围,若不存在说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】低密度脂蛋白是一种运载胆固醇进入外周组织细胞的脂蛋白颗粒,可被氧化成氧化低密度脂蛋白,当低密度脂蛋白,尤其是氧化修饰的低密度脂蛋白过量时,它携带的胆固醇便积存在动脉壁上,久了容易引起动脉硬化,因此低密度脂蛋白被称为“坏的胆固醇”.为了调查某地中年人的低密度脂蛋白浓度是否与肥胖有关,随机调查该地100名中年人,得到2×2列联表如下:

肥胖

不肥胖

总计

低密度脂蛋白不高于

12

63

75

低密度脂蛋白高于

8

17

25

总计

20

80

100

由此得出的正确结论是( )

A.10%的把握认为“该地中年人的低密度脂蛋白浓度与肥胖有关”

B.10%的把握认为“该地中年人的低密度脂蛋白浓度与肥胖无关”

C.90%的把握认为“该地中年人的低密度脂蛋白浓度与肥胖有关”

D.90%的把握认为“该地中年人的低密度脂蛋白浓度与肥胖无关”

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数为常数)

(Ⅰ)若是定义域上的单调函数,求的取值范围;

(Ⅱ)若存在两个极值点,且,求的最大值.

查看答案和解析>>

同步练习册答案