相关习题
 0  263239  263247  263253  263257  263263  263265  263269  263275  263277  263283  263289  263293  263295  263299  263305  263307  263313  263317  263319  263323  263325  263329  263331  263333  263334  263335  263337  263338  263339  263341  263343  263347  263349  263353  263355  263359  263365  263367  263373  263377  263379  263383  263389  263395  263397  263403  263407  263409  263415  263419  263425  263433  266669 

科目: 来源: 题型:

【题目】基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,结果如下表:

月份

月份代码x

1

2

3

4

5

6

市场占有率

11

13

16

15

20

21

请在给出的坐标纸中作出散点图,并用相关系数说明可用线性回归模型拟合月度市场占有率y与月份代码x之间的关系;

y关于x的线性回归方程,并预测该公司2018年2月份的市场占有率;

根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000元辆和800元辆的AB两款车型报废年限各不相同考虑到公司的经济效益,该公司决定先对两款单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表如下:

报废年限

车型

1年

2年

3年

4年

总计

A

10

30

40

20

100

B

15

40

35

10

100

经测算,平均每辆单车每年可以为公司带来收入500元不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且用频率估计每辆单车使用寿命的概率,以每辆单车产生利润的期望值为决策依据如果你是该公司的负责人,你会选择采购哪款车型?

参考数据:

参考公式:相关系数

回归直线方程为其中:

查看答案和解析>>

科目: 来源: 题型:

【题目】共享单车的投放,方便了市民短途出行,被誉为中国新四大发明之一.某市为研究单车用户与年龄的相关程度,随机调查了100位成人市民,统计数据如下:

不小于40

小于40

合计

单车用户

12

y

m

非单车用户

x

32

70

合计

n

50

100

1)求出列联表中字母xymn的值;

2)①从此样本中,对单车用户按年龄采取分层抽样的方法抽出5人进行深入调研,其中不小于40岁的人应抽多少人?

②从独立性检验角度分析,能否有以上的把握认为该市成人市民是否为单车用户与年龄是否小于40岁有关.

下面临界值表供参考:

P

0.15

0.10

0.05

0.25

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6635

7.879

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

1)求的极值;

2)若时,的单调性相同,求的取值范围;

3)当时,函数有最小值,记的最小值为,证明:.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数=[]

若曲线y= fx在点(1,处的切线与轴平行a

x=2处取得极小值a的取值范围

查看答案和解析>>

科目: 来源: 题型:

【题目】某种出口产品的关税税率t.市场价格x(单位:千元)与市场供应量p(单位:万件)之间近似满足关系式:,其中k.b均为常数.当关税税率为75%时,若市场价格为5千元,则市场供应量约为1万件;若市场价格为7千元,则市场供应量约为2万件.

(1)试确定k.b的值;

(2)市场需求量q(单位:万件)与市场价格x近似满足关系式:.P = q时,市场价格称为市场平衡价格.当市场平衡价格不超过4千元时,试确定关税税率的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面为菱形,已知

求证:平面平面ABCD

求直线AE与平面CED的所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四边形ABCD是边长为1的正方形,平面ABCD平面ABCD,且G为线段EC上的动点,则下列结论中正确的是______

该几何体外接球的表面积为

GEC中点,则平面AEF

的最小值为3.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线C的焦点坐标为,点,过点P作直线l交抛物线CAB两点,过AB分别作抛物线C的切线,两切线交于点Q,则面积的最小值为( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】证明:存在无穷多个棱长为正整数的长方体,其体积恰等于对角线长的平方,且该长方体的每一个表面总可以割并成两个整边正方形.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,曲线在原点处的切线相同。

(1)求的值;

(2)求的单调区间和极值;

(3)若时,,求的取值范围。

查看答案和解析>>

同步练习册答案