相关习题
 0  263281  263289  263295  263299  263305  263307  263311  263317  263319  263325  263331  263335  263337  263341  263347  263349  263355  263359  263361  263365  263367  263371  263373  263375  263376  263377  263379  263380  263381  263383  263385  263389  263391  263395  263397  263401  263407  263409  263415  263419  263421  263425  263431  263437  263439  263445  263449  263451  263457  263461  263467  263475  266669 

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面是正方形,且,平面 平面,点为线段的中点,点是线段上的一个动点.

(Ⅰ)求证:平面 平面

(Ⅱ)设二面角的平面角为,试判断在线段上是否存在这样的点,使得,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知曲线C的极坐标方程是,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C经过伸缩变换得到曲线E,直线t为参数)与曲线E交于AB两点.

1)设曲线C上任一点为,求的最小值;

2)求出曲线E的直角坐标方程,并求出直线l被曲线E截得的弦AB长.

查看答案和解析>>

科目: 来源: 题型:

【题目】某社区消费者协会为了解本社区居民网购消费情况,随机抽取了100位居民作为样本,就最近一年来网购消费金额(单位:千元),网购次数和支付方式等进行了问卷调查.经统计这100位居民的网购消费金额均在区间内,按分成6组,其频率分布直方图如图所示.

1)估计该社区居民最近一年来网购消费金额的中位数;

2)将网购消费金额在20千元以上者称为网购迷,补全下面的列联表,并判断有多大把握认为网购迷与性别有关系

总计

网购迷

20

非网购迷

45

总计

100

附:

临界值表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】根据统计,某蔬菜基地西红柿亩产量的增加量(百千克)与某种液体肥料每亩使用量(千克)之间的对应数据的散点图,如图所示.

1)依据数据的散点图可以看出,可用线性回归模型拟合的关系,请计算相关系数并加以说明(若,则线性相关程度很高,可用线性回归模型拟合);

2)求关于的回归方程,并预测液体肥料每亩使用量为千克时,西红柿亩产量的增加量约为多少?

附:相关系数公式,回归方程中斜率和截距的最小二乘估计公式分别为:.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系并取相同的单位长度,曲线的极坐标方程为.

(1)把曲线的方程化为普通方程,的方程化为直角坐标方程

(2)若曲线,相交于两点,的中点为,过点作曲线的垂线交曲线两点,求.

查看答案和解析>>

科目: 来源: 题型:

【题目】甲乙两名射击运动员分别对一目标射击一次,甲射中的概率为0.8,乙射中的概率为0.9,求:

(1)2人都射中目标的概率;

(2)2人中恰有1人射中目标的概率;

(3)2人至少有1人射中目标的概率。

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,椭圆的左、右焦点分别为.已知点在椭圆上,且点M到两焦点距离之和为4.

1)求椭圆的方程;

2)设与MOO为坐标原点)垂直的直线交椭圆于ABAB不重合),求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知向量=(1,-3,2),=(-2,1,1),点A(-3,-1,4),B(-2,-2,2).

(1)求|2+|;

(2)在直线AB上,是否存在一点E,使得?(O为原点)

查看答案和解析>>

科目: 来源: 题型:

【题目】以下三个关于圆锥曲线的命题中:

①设为两个定点,为非零常数,若,则动点的轨迹是双曲线;

②方程的两根可分别作为椭圆和双曲线的离心率;

③双曲线与椭圆有相同的焦点;

④已知抛物线,以过焦点的一条弦为直径作圆,则此圆与准线相切,其中真命题为__________.(写出所有真命题的序号)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,在三棱柱中,四边形是长方形,,连接

证明:平面平面

是线段上的一点,且,试求的值.

查看答案和解析>>

同步练习册答案