科目: 来源: 题型:
【题目】为抗击新冠病毒,某部门安排甲、乙、丙、丁、戊五名专家到三地指导防疫工作.因工作需要,每地至少需安排一名专家,其中甲、乙两名专家必须安排在同一地工作,丙、丁两名专家不能安排在同一地工作,则不同的分配方法总数为( )
A.18B.24C.30D.36
查看答案和解析>>
科目: 来源: 题型:
【题目】若无穷数列满足:,当,时.
其中表示,,,中的最大项,有以下结论:
若数列是常数列,则
若数列是公差的等差数列,则;
若数列是公比为q的等比数列,则
则其中正确的结论是______写出所有正确结论的序号
查看答案和解析>>
科目: 来源: 题型:
【题目】已知箱中装有10个不同的小球,其中2个红球、3个黑球和5个白球,现从该箱中有放回地依次取出3个小球.则3个小球颜色互不相同的概率是_____;若变量ξ为取出3个球中红球的个数,则ξ的数学期望E(ξ)为_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司生产的某种产品,如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司2014-2018年的相关数据如下表所示:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年生产台数(万台) | 2 | 4 | 5 | 6 | 8 |
该产品的年利润(百万元) | 30 | 40 | 60 | 50 | 70 |
年返修台数(台) | 19 | 58 | 45 | 71 | 70 |
注:
(1)从该公司2014-2018年的相关数据中任意选取3年的数据,求这3年中至少有2年生产部门考核优秀的概率.
(2)利用上表中五年的数据求出年利润(百万元)关于年生产台数(万台)的回归直线方程是 ①.现该公司计划从2019年开始转型,并决定2019年只生产该产品1万台,且预计2019年可获利32(百万元);但生产部门发现,若用预计的2019年的数据与2014-2018年中考核优秀年份的数据重新建立回归方程,只有当重新估算的,的值(精确到0.01),相对于①中,的值的误差的绝对值都不超过时,2019年该产品返修率才可低于千分之一.若生产部门希望2019年考核优秀,能否同意2019年只生产该产品1万台?请说明理由.
(参考公式:, ,,相对的误差为.)
查看答案和解析>>
科目: 来源: 题型:
【题目】某歌舞团有名演员,他们编排了一些节目,每个节目都由四名演员同台表演.在一次演出中,他们发现:能适当安排若干个节目,使团中每两名演员都恰有一次在这次演出中同台表演。求的最小值。
查看答案和解析>>
科目: 来源: 题型:
【题目】在某次会操活动中,领操员让编号为的名学生排成一个圆形阵,做循环报数,领操员一一记录报数者的编号,并要求报l、2的学生出列,报3的学生留在队列中,并将编号改为此次循环报数中三名学生的编号之和.一直循环报数下去.当操场上剩余的学生人数不超过两名时,报数活动结束.领操员记录最后留在操场的学生编号(例如,编号为的九名学生排成一个圆形阵,报数结束后,只有原始编号为9的学生留在操场,此时,他的编号为45,领操员记录下来的数据分别为l,2,3,4,5,6,7,8,9,6,15,24,45).已知共有2011名学生参加会操.
(1)最后留在场内的学生最初的编号是几号?
(2)求领操员记录下的编号之和.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com