相关习题
 0  263328  263336  263342  263346  263352  263354  263358  263364  263366  263372  263378  263382  263384  263388  263394  263396  263402  263406  263408  263412  263414  263418  263420  263422  263423  263424  263426  263427  263428  263430  263432  263436  263438  263442  263444  263448  263454  263456  263462  263466  263468  263472  263478  263484  263486  263492  263496  263498  263504  263508  263514  263522  266669 

科目: 来源: 题型:

【题目】椭圆的离心率是,过点做斜率为的直线,椭圆与直线交于两点,当直线垂直于轴时

(Ⅰ)求椭圆的方程;

(Ⅱ)当变化时,在轴上是否存在点,使得是以为底的等腰三角形,若存在求出的取值范围,若不存在说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四面体中,分别是线段的中点,,直线与平面所成的角等于

(Ⅰ)证明:平面平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在多面体中,为矩形,为等腰梯形,,且,平面平面分别为的中点.

(Ⅰ)求证:平面

(Ⅱ)若,求多面体的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为A、B+、B、C+、C、D+、D、E共8个等级.参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%、24%、24%、16%、7%、3%.选考科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八个分数区间,得到考生的等级成绩.

某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布N(60,169).

(Ⅰ)求物理原始成绩在区间(47,86)的人数;

(Ⅱ)按高考改革方案,若从全省考生中随机抽取3人,记X表示这3人中等级成绩在区间[61,80]的人数,求X的分布列和数学期望.

(附:若随机变量,则

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数上的偶函数,其图象关于点对称,且在区间上是单调函数,则的值是( )

A. B. C. D. 无法确定

查看答案和解析>>

科目: 来源: 题型:

【题目】椭圆的左焦点为且离心率为为椭圆上任意一点,的取值范围为.

(1)求椭圆的方程;

(2)如图,设圆是圆心在椭圆上且半径为的动圆,过原点作圆的两条切线,分别交椭圆于两点.是否存在使得直线与直线的斜率之积为定值?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线的参数方程为t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程是,曲线的极坐标方程是

1)求直线l和曲线的直角坐标方程,曲线的普通方程;

2)若直线l与曲线和曲线在第一象限的交点分别为PQ,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线Cy2=4x与椭圆E1ab0)有一个公共焦点F.设抛物线C与椭圆E在第一象限的交点为M.满足|MF|.

1)求椭圆E的标准方程;

2)过点P1)的直线交抛物线CAB两点,直线PO交椭圆E于另一点Q.PAB的中点,求△QAB的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】随着人们生活水平的提高,越来越多的人愿意花更高的价格购买手机.某机构为了解市民使用手机的价格情况,随机选取了100人进行调查,并将这100人使用的手机价格按照,…,分成6组,制成如图所示的频率分布直方图:

(1)求图中的值;

(2)求这组数据的平均数和中位数(同一组中的数据用该组区间的中间值作代表);

(3)利用分层抽样从手机价格在的人中抽取5人,并从这5人中抽取2人进行访谈,求抽取出的2人的手机价格在不同区间的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】大学先修课程,是在高中开设的具有大学水平的课程,旨在让学有余力的高中生早接受大学思维方式、学习方法的训练,为大学学习乃至未来的职业生涯做好准备.某高中成功开设大学先修课程已有两年,共有250人参与学习先修课程.

(Ⅰ)这两年学校共培养出优等生150人,根据下图等高条形图,填写相应列联表,并根据列联表检验能否在犯错的概率不超过0.01的前提下认为学习先修课程与优等生有关系?

优等生

非优等生

总计

学习大学先修课程

250

没有学习大学先修课程

总计

150

(Ⅱ)某班有5名优等生,其中有2名参加了大学生先修课程的学习,在这5名优等生中任选3人进行测试,求这3人中至少有1名参加了大学先修课程学习的概率.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

参考公式:其中

查看答案和解析>>

同步练习册答案