相关习题
 0  263342  263350  263356  263360  263366  263368  263372  263378  263380  263386  263392  263396  263398  263402  263408  263410  263416  263420  263422  263426  263428  263432  263434  263436  263437  263438  263440  263441  263442  263444  263446  263450  263452  263456  263458  263462  263468  263470  263476  263480  263482  263486  263492  263498  263500  263506  263510  263512  263518  263522  263528  263536  266669 

科目: 来源: 题型:

【题目】如今我们的互联网生活日益丰富,除了可以很方便地网购,网络外卖也开始成为不少人日常生活中不可或缺的一部分市某调查机构针对该市市场占有率最高的两种网络外卖企业以下简称外卖A、外卖的服务质量进行了调查,从使用过这两种外卖服务的市民中随机抽取了1000人,每人分别对这两家外卖企业评分,满分均为100分,并将分数分成5组,得到以下频数分布表:

分数

人数

种类

外卖A

50

150

100

400

300

外卖B

100

100

300

200

300

表中得分越高,说明市民对网络外卖服务越满意若得分不低于60分,则表明该市民对网络外卖服务质量评价较高现将分数按“服务质量指标”划分成以下四个档次:

分数

服务质量指标

0

1

2

3

视频率为概率,解决下列问题:

从该市使用过外卖A的市民中任选5人,记对外卖A服务质量评价较高的人数为X,求X的数学期望.

从参与调查的市民中随机抽取1人,试求其评分中外卖A的“服务质量指标”与外卖B的“服务质量指标”的差的绝对值等于2的概率;

M市工作的小王决定从外卖A、外卖B这两种网络外卖中选择一种长期使用,如果从这两种外卖的“服务质量指标”的期望角度看,他选择哪种外卖更合适?试说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆的面积为且与轴、轴分别交于两点.

1)求圆的方程;

(2)若直线与线段相交,求实数的取值范围;

(3)试讨论直线与(1)小题所求圆的交点个数.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率为,且椭圆上的点到焦点的最长距离为

1)求椭圆C的方程;

2)过点P02)的直线l(不过原点O)与椭圆C交于两点ABM为线段AB的中点.

(ⅰ)证明:直线OMl的斜率乘积为定值;

(ⅱ)求OAB面积的最大值及此时l的斜率.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校学生社团组织活动丰富,学生会为了解同学对社团活动的满意程度,随机选取了100位同学进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[4050),[5060),[6070),[90100]分成6组,制成如图所示频率分布直方图.

1)求图中x的值;

2)求这组数据的中位数;

3)现从被调查的问卷满意度评分值在[6080)的学生中按分层抽样的方法抽取5人进行座谈了解,再从这5人中随机抽取2人作主题发言,求抽取的2人恰在同一组的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱柱ABC-A1B1C1中,侧面AA1C1C是矩形,平面ABC⊥平面AA1C1CAB=2AC=1

1)求证:AA1⊥平面ABC

2)在线段BC1上是否存在一点D,使得ADA1B?若存在求出的值,若不存在请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某地实施乡村振兴战略,对农副产品进行深加工以提高产品附加值,已知某农产品成本为每件3元,加工后的试营销期间,对该产品的价格与销售量统计得到如下数据:

单价x(元)

6

6.2

6.4

6.6

6.8

7

销量y(万件)

80

74

73

70

65

58

数据显示单价x与对应的销量y满足线性相关关系.

1)求销量y(件)关于单价x(元)的线性回归方程

2)根据销量y关于单价x的线性回归方程,要使加工后收益P最大,应将单价定为多少元?(产品收益=销售收入-成本).

参考公式:==

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线Cy2=2pxp0)的焦点为F,抛物线C上横坐标为3的点M到焦点F的距离为4

1)求抛物线C的方程;

2)过抛物线C的焦点F且斜率为1的直线l交抛物线CAB两点,求弦长|AB|

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,在梯形CDEF中,四边形ABCD为正方形,且,将沿着线段AD折起,同时将沿着线段BC折起,使得EF两点重合为点P

求证:平面平面ABCD

求直线PB与平面PCD的所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列n项和为,且满足.

1)求数列的通项公式:

2)若,求正整数m的值;

3)是否存在正整数m,使得恰好为数列中的一项?若存在,求出所有满足条件的m值,若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知二次函数.

1)若函数在区间上存在零点,求实数p的取值范围;

2)问是否存在常数,使得当时,的值域为区间D,且D的长度为.

(注:区间 的长度为.

查看答案和解析>>

同步练习册答案