科目: 来源: 题型:
【题目】为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2017年种植的一批试验紫甘薯在温度升高时6组死亡的株数:
经计算: , , , , , , ,其中分别为试验数据中的温度和死亡株数, .
(1)若用线性回归模型,求关于的回归方程(结果精确到);
(2)若用非线性回归模型求得关于的回归方程为,且相关指数为.
(i)试与(1)中的回归模型相比,用说明哪种模型的拟合效果更好;
(ii)用拟合效果好的模型预测温度为时该批紫甘薯死亡株数(结果取整数).
附:对于一组数据, ,……, ,其回归直线的斜率和截距的最小二乘估计分别为: ;相关指数为: .
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列满足是数列的前项的和.
(1)求数列的通项公式;
(2)若成等差数列,,18,成等比数列,求正整数的值;
(3)是否存在,使得为数列中的项?若存在,求出所有满足条件的的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数且 )曲线的参数方程为(为参数,且),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为: ,曲线的极坐标方程为.
(1)求与的交点到极点的距离;
(2)设与交于点,与交于点,当在上变化时,求的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】设f(x)=ax2+(1-a)x+a-3.
(1)若不等式f(x)≥-3对一切实数x恒成立,求实数a的取值范围;
(2)解关于x的不等式f(x)<a-2(a∈R).
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列{an}满足a1=1,an+1=3an+4,n∈N*.
(1)证明:数列{an+2}是等比数列,并求数列{an}的通项公式;
(2)设bn=(a2n+2)log3(an+2),求数列{bn}的前n项和Tn.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修:不等式选讲
已知函数f(x)=|2x+3|+|2x﹣1|.
(Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若关于x的不等式f(x)≤|3m+1|有解,求实数m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆O经过椭圆C:=1(a>b>0)的两个焦点以及两个顶点,且点(b,)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l与圆O相切,与椭圆C交于M、N两点,且|MN|=,求直线l的倾斜角.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com