科目: 来源: 题型:
【题目】已知椭圆的左、右焦点分别为、,圆经过椭圆的两个焦点和两个顶点,点在椭圆上,且,.
(Ⅰ)求椭圆的方程和点的坐标;
(Ⅱ)过点的直线与圆相交于、两点,过点与垂直的直线与椭圆相交于另一点,求的面积的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线C的顶点在原点,对称轴是y轴,直线与抛物线交于不同的两点、,线段中点的纵坐标为2,且.
(1)求抛物线的标准方程;
(2)设抛物线的焦点为,若直线经过焦点,求直线的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的离心率为,其中一个焦点F在直线上.
(1)求椭圆C的方程;
(2)若直线和直线与椭圆分别相交于点、、、,求的值;
(3)若直线与椭圆交于P,Q两点,试求面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】为保护农民种粮收益,促进粮食生产,确保国家粮食安全,调动广大农民粮食生产的积极性,从2004年开始,国家实施了对种粮农民直接补贴.通过对2014~2018年的数据进行调查,发现某地区发放粮食补贴额(亿元)与该地区粮食产量(万亿吨)之间存在着线性相关关系.统计数据如下表:
年份 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
补贴额亿元 | 9 | 10 | 12 | 11 | 8 |
粮食产量万亿吨 | 23 | 25 | 30 | 26 | 21 |
(1)请根据如表所给的数据,求出关于的线性回归直线方程;
(2)通过对该地区粮食产量的分析研究,计划2019年在该地区发放粮食补贴额7亿元,请根据(1)中所得的线性回归直线方程,预测2019年该地区的粮食产量.
(参考公式:,)
查看答案和解析>>
科目: 来源: 题型:
【题目】下列命题中正确命题的个数是( )
①命题“函数的最小值不为”是假命题;
②“”是“”的必要不充分条件;③若为假命题,则, 均为假命题;
④若命题: , ,则: , ;
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】以下四个命题中真命题的序号是( ).
①平面内到两定点距离之比等于常数的点的轨迹是圆;
②平面内与定点A(-3,0)和B(3,0)的距离之差等于4的点的轨迹为;
③点P是抛物线上的动点,点P在x轴上的射影是M,点A的坐标是,则的最小值是;
④已知P为抛物线上一个动点,Q为圆上一个动点,那么点P到点Q的距离与点P到抛物线的准线距离之和的最小值是
A.①B.②C.③D.④
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系xOy中,曲线C1的参数方程为(t为参数),曲线C2的参数方程为(α为参数),以O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C1和C2的极坐标方程;
(2)直线l的极坐标方程为,直线l与曲线C1和C2分别交于不同于原点的A,B两点,求|AB|的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】汕尾市基础教育处为调查在校中学生每天放学后的自学时间情况,在本市的所有中学生中随机抽取了120名学生进行调查,现将日均自学时间小于1小时的学生称为“自学不足”者根据调查结果统计后,得到如下列联表,已知在调查对象中随机抽取1人,为“自学不足”的概率为.
非自学不足 | 自学不足 | 合计 | |
配有智能手机 | 30 | ||
没有智能手机 | 10 | ||
合计 |
请完成上面的列联表;
根据列联表的数据,能否有的把握认为“自学不足”与“配有智能手机”有关?
附表及公式: ,其中
查看答案和解析>>
科目: 来源: 题型:
【题目】为半椭圆的左、右两个顶点,为上焦点,将半椭圆和线段合在一起称为曲线
(1)求的外接圆圆心的坐标
(2)过焦点的直线与曲线交于两点,若,求所有满足条件的直线的方程
(3)对于一般的封闭曲线,曲线上任意两点距离的最大值称为该曲线的“直径”,如圆的“直径”就是通常的直径,椭圆的“直径”就是长轴的长,求该曲线的“直径”
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com