科目: 来源: 题型:
【题目】已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)设,,是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,证明直线与轴相交于定点;
(Ⅲ)在(Ⅱ)的条件下,过点的直线与椭圆交于,两点,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,曲线(为参数,实数),曲线(为参数,实数).在以为极点,轴的正半轴为极轴的极坐标系中,射线与交于,两点,与交于,两点.当时,;当,.
(1)求和的值.
(2)求的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】命题:方程表示焦点在轴上的双曲线:命题:若存在,使得成立.
(1)如果命题是真命题,求实数的取值范围;
(2)如果“”为假命题,“”为真命题,求实数的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的右焦点,,,是椭圆上任意三点,,关于原点对称且满足.
(1)求椭圆的方程.
(2)若斜率为的直线与圆:相切,与椭圆相交于不同的两点、,求时,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知双曲线-=1(a>0,b>0)的离心率为2,焦点到渐近线的距离等于,过右焦点F2的直线l交双曲线于A,B两点,F1为左焦点.
(1)求双曲线的方程;
(2)若△F1AB的面积等于6,求直线l的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】今有9所省级示范学校参加联考,参加人数约5000人,考完后经计算得数学平均分为113分.已知本次联考的成绩服从正态分布,且标准差为12.
(1)计算联考成绩在137分以上的人数.
(2)从所有试卷中任意抽取1份,已知分数不超过123分的概率为0.8.
①求分数低于103分的概率.
②从所有试卷中任意抽取5份,由于试卷数量较大,可以把每份试卷被抽到的概率视为相同,表示抽到成绩低于103分的试卷的份数,写出的分布列,并求出数学期望.
参考数据:
,,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】某高科技企业研制出一种型号为A的精密数控车床,A型车床为企业创造的价值逐年减少(以投产一年的年初到下一年的年初为A型车床所创造价值的第一年).若第 1 年A型车床创造的价值是250万元,且第1年至第6年,每年A型车床创造的价值减少30万元;从第7年开始,每年A型车床创造的价值是上一年价值的 50%.现用()表示A型车床在第n年创造的价值.
(1)求数列的通项公式;
(2)记为数列的前n项的和,企业经过成本核算,若 万元,则继续使用A型车床,否则更换A型车床,试问该企业须在第几年年初更换A型车床?(已知:若正数数列是单调递减数列,则数列也是单调递减数列).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com