相关习题
 0  263439  263447  263453  263457  263463  263465  263469  263475  263477  263483  263489  263493  263495  263499  263505  263507  263513  263517  263519  263523  263525  263529  263531  263533  263534  263535  263537  263538  263539  263541  263543  263547  263549  263553  263555  263559  263565  263567  263573  263577  263579  263583  263589  263595  263597  263603  263607  263609  263615  263619  263625  263633  266669 

科目: 来源: 题型:

【题目】

讨论的单调区间;

时,上的最小值为,求上的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知双曲线的右顶点为A,抛物线的焦点与点A重合.

1)求抛物线的标准方程;

2)若直线l过点A且斜率为双曲线的离心率,求直线l被抛物线截得的弦长.

查看答案和解析>>

科目: 来源: 题型:

【题目】经调查,3个成年人中就有一个高血压,那么什么是高血压?血压多少是正常的?经国际卫生组织对大量不同年龄的人群进行血压调查,得出随年龄变化,收缩压的正常值变化情况如下表:

年龄x

28

32

38

42

48

52

58

62

收缩压单位

114

118

122

127

129

135

140

147

其中:

请画出上表数据的散点图;

请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程的值精确到

若规定,一个人的收缩压为标准值的倍,则为血压正常人群;收缩压为标准值的倍,则为轻度高血压人群;收缩压为标准值的倍,则为中度高血压人群;收缩压为标准值的倍及以上,则为高度高血压人群一位收缩压为180mmHg70岁的老人,属于哪类人群?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)若处的切线方程为,求的值;

(2)若为区间上的任意实数,且对任意,总有成立,求实数的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,四棱锥中,平面的中点.

(1)证明:平面

(2)设二面角,求四棱锥的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程与曲线的直角坐标方程;

(2)若交于两点,点的极坐标为,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】2018年11月15日,我市召开全市创建全国文明城市动员大会,会议向全市人民发出动员令,吹响了集结号.为了了解哪些人更关注此活动,某机构随机抽取了年龄在15~75岁之间的100人进行调查,并按年龄绘制的频率分布直方图如图所示,其分组区间为:.把年龄落在内的人分别称为“青少年人”和“中老年人”,经统计“青少年人”与“中老年人”的人数之比为.

(1)求图中的值,若以每个小区间的中点值代替该区间的平均值,估计这100人年龄的平均值

(2)若“青少年人”中有15人关注此活动,根据已知条件完成题中的列联表,根据此统计结果,问能否有的把握认为“中老年人”比“青少年人”更加关注此活动?

关注

不关注

合计

青少年人

15

中老年人

合计

50

50

100

0.050

0.010

0.001

3.841

6.635

10.828

附参考公式:,其中.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线的焦点,点为抛物线上一点,且不在直线上,则周长取最小值时,线段的长为( )

A. 1B. C. 5D.

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程与曲线的直角坐标方程;

(2)若交于两点,点的极坐标为,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】2018年11月15日,我市召开全市创建全国文明城市动员大会,会议向全市人民发出动员令,吹响了集结号.为了了解哪些人更关注此活动,某机构随机抽取了年龄在15~75岁之间的100人进行调查,并按年龄绘制的频率分布直方图如图所示,其分组区间为:.把年龄落在内的人分别称为“青少年人”和“中老年人”,经统计“青少年人”与“中老年人”的人数之比为.

(1)求图中的值,若以每个小区间的中点值代替该区间的平均值,估计这100人年龄的平均值

(2)若“青少年人”中有15人关注此活动,根据已知条件完成题中的列联表,根据此统计结果,问能否有的把握认为“中老年人”比“青少年人”更加关注此活动?

关注

不关注

合计

青少年人

15

中老年人

合计

50

50

100

0.050

0.010

0.001

3.841

6.635

10.828

附参考公式:,其中.

查看答案和解析>>

同步练习册答案