科目: 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PPD//平面MAC,PA=PD=,AB=4.
(I)求证:M为PB的中点;
(II)求二面角B-PD-A的大小;
(III)求直线MC与平面BDP所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】若数列满足:对任意,都有,则称为“紧密”数列.
(1)设某个数列为“紧密”数列,其前项依次为,求的取值范围;
(2)若数列的前项和,判断是否为“紧密”数列,并说明理由;
(3)设是公比为的等比数列,前项和为,且与均为“紧密”数列,求实数的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求曲线的普通方程和直线的直角坐标方程;
(2)射线的极坐标方程为,若射线与曲线的交点为,与直线的交点为,求线段的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】设是抛物线上的一点,抛物线在点处的切线方程为.
(1)求的方程;
(2)已知过点的两条不重合直线,的斜率之积为,且直线,分别交抛物线于,两点和,两点.是否存在常数使得成立?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥中,底而为正方形,底面,,点为棱的中点,点,分别为棱,上的动点(,与所在棱的端点不重合),且满足.
(1)证明:平面平面;
(2)当三棱锥的体积最大时,求二面角的余弦值
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,点为半径为千米的圆形海岛的最东端,点为最北端,在点的正东千米处停泊着一艘缉私艇,某刻,发现在处有一小船正以速度 (千米/小时)向正北方向行驶,已知缉私艇的速度为(千米/小时) .
(1)为了在最短的时间内拦截小船检查,缉私艇应向什么方向行驶? (精确到)
(2)海岛上有一快艇要为缉私艇送去给养,问选择海岛边缘的哪一点出发才能行程最短? (如图2建立坐标系, 用坐标表示点的位置)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com