科目: 来源: 题型:
【题目】下图1,是某设计员为一种商品设计的平面logo样式.主体是由内而外的三个正方形构成.该图的设计构思如图2,中间正方形的四个顶点,分别在最外围正方形ABCD的边上,且分所在边为a,b两段.设中间阴影部分的面积为,最内正方形的面积为.当,且取最大值时,定型该logo的最终样式,则此时a,b的取值分别为_____________.
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司培训员工某项技能,培训有如下两种方式:
方式一:周一到周五每天培训1小时,周日测试
方式二:周六一天培训4小时,周日测试
公司有多个班组,每个班组60人,现任选两组记为甲组、乙组先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如表:
第一周 | 第二周 | 第三周 | 第四周 | |
甲组 | 20 | 25 | 10 | 5 |
乙组 | 8 | 16 | 20 | 16 |
用方式一与方式二进行培训,分别估计员工受训的平均时间精确到,并据此判断哪种培训方式效率更高?
在甲乙两组中,从第三周培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】关于函数,.有下列命题:
①对,恒有成立.
②,使得成立.
③“若,则有且.”的否命题.
④“若且,则有.”的逆否命题.
其中,真命题有_____________.(只需填序号)
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程(本题满分10分)
在平面直角坐标系中,将曲线向左平移2个单位,再将得到的曲线上的每一个点的横坐标保持不变,纵坐标缩短为原来的,得到曲线,以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,的极坐标方程为.
(1)求曲线的参数方程;
(2)已知点在第一象限,四边形是曲线的内接矩形,求内接矩形周长的最大值,并求周长最大时点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C:(a>b>0)的离心率为且经过点P(2,).
(1)求椭圆C的方程;
(2)若椭圆C的左右顶点分别为A,B,过点A斜率为k(k≠0)的直线l交椭圆C于点D,交y轴于点E.是否存在定点Q,对于任意的k(k≠0)都有BD⊥EQ,若存在,求△AQD的面积的最大值;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
(1)若曲线在点处的切线与直线垂直,求函数的极值;
(2)设函数.当=时,若区间[1,e]上存在x0,使得,求实数的取值范围.(为自然对数底数)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,分别为椭圆的左、右焦点,点在椭圆上,且轴,的周长为6.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点的直线与椭圆交于,两点,设为坐标原点,是否存在常数,使得恒成立?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】△ABC的内角A,B,C的对边分别为a,b,c,且(b+c)tanC=﹣ctanA.
(1)求A;
(2)若b,c=2,点D在BC边上,且AD=BD,求AD的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】经过多年的努力,炎陵黄桃在国内乃至国际上逐渐打开了销路,成为炎陵部分农民脱贫致富的好产品.为了更好地销售,现从某村的黄桃树上随机摘下了100个黄桃进行测重,其质量分布在区间内(单位:克),统计质量的数据作出其频率分布直方图如图所示:
(1)按分层抽样的方法从质量落在,的黄桃中随机抽取5个,再从这5个黄桃中随机抽2个,求这2个黄桃质量至少有一个不小于400克的概率;
(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该村的黄桃树上大约还有100000个黄桃待出售,某电商提出两种收购方案:
A.所有黄桃均以20元/千克收购;
B.低于350克的黄桃以5元/个收购,高于或等于350克的以9元/个收购.
请你通过计算为该村选择收益最好的方案.
(参考数据:)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列{an}中,a1=1,{bn}满足bn=2nan,b3=10,且{bn}是等差数列.
(1)求数列{an}的通项;
(2)求数列{an}的前n项和为Sn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com