相关习题
 0  263480  263488  263494  263498  263504  263506  263510  263516  263518  263524  263530  263534  263536  263540  263546  263548  263554  263558  263560  263564  263566  263570  263572  263574  263575  263576  263578  263579  263580  263582  263584  263588  263590  263594  263596  263600  263606  263608  263614  263618  263620  263624  263630  263636  263638  263644  263648  263650  263656  263660  263666  263674  266669 

科目: 来源: 题型:

【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月AB两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中AB两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:

支付金额

支付方式

不大于2000

大于2000

仅使用A

27

3

仅使用B

24

1

(Ⅰ)估计该校学生中上个月AB两种支付方式都使用的人数;

(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;

(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】华为手机作为华为公司三大核心业务之一,2018年的销售量跃居全球第二名,某机构随机选取了100名华为手机的顾客进行调查,并将这人的手机价格按照,…分成组,制成如图所示的频率分布直方图,其中.

1)求的值;

2)求这名顾客手机价格的平均数(同一组中的数据用该组区间的中间值作代表);

3)利用分层抽样的方式从手机价格在的顾客中选取人,并从这人中随机抽取人进行回访,求抽取的人手机价格在不同区间的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60/盒、65/盒、80/盒、90/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%

①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;

②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AB是半径为2的圆周上的定点,P为圆周上的动点,是锐角,大小为β.图中阴影区域的面积的最大值为

A. 4β+4cosβB. 4β+4sinβC. 2β+2cosβD. 2β+2sinβ

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,在四棱锥EABCD中,底面ABCD是菱形,∠ADC60°ACBD交于点OEC⊥底面ABCDFBE的中点,ABCE2

1)求证:DE∥平面ACF

2)求异面直线EOAB所成角的余弦值;

查看答案和解析>>

科目: 来源: 题型:

【题目】已知实数,设函数

(1)当时,求函数的单调区间;

(2)对任意均有的取值范围.

注:为自然对数的底数.

查看答案和解析>>

科目: 来源: 题型:

【题目】ABC中,内角ABC所对的边分别为abc,且

1)求角A

2)若a2ABC的周长为6,求ABC的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知点为抛物线,点为焦点,过点的直线交抛物线于两点,点在抛物线上,使得的重心轴上,直线轴于点,且在点右侧.记的面积为.

(1)求的值及抛物线的标准方程;

(2)求的最小值及此时点的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知三棱柱,平面平面,分别是的中点.

(1)证明:

(2)求直线与平面所成角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】己知二次函数均为实常数,)的最小值是0,函数的零点是,函数满足,其中,为常数.

1)已知实数满足、,且,试比较的大小关系,并说明理由;

2)求证:

查看答案和解析>>

同步练习册答案