科目: 来源: 题型:
【题目】已知椭圆的中心是坐标原点,它的短轴长为,一个焦点为,一个定点,且,过点的直线与椭圆相交于两点..
(1)求椭圆的方程及离心率.
(2)如果以为直径的圆过原点,求直线的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的离心率,一条准线方程为
⑴求椭圆的方程;
⑵设为椭圆上的两个动点,为坐标原点,且.
①当直线的倾斜角为时,求的面积;
②是否存在以原点为圆心的定圆,使得该定圆始终与直线相切?若存在,请求出该定圆方程;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点在平行于轴的直线上,且与轴的交点为,动点满足平行于轴,且.
(1)求出点的轨迹方程.
(2)设点,,求的最小值,并写出此时点的坐标.
(3)过点的直线与点的轨迹交于.两点,求证.两点的横坐标乘积为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】有一椭圆形溜冰场,长轴长100米,短轴长为60米,现要在这溜冰场上划定一个各顶点都在溜冰场边界上的矩形区域,且使这个区域的面积最大,应把这个矩形的顶点定位在何处?并求出此矩形的周长.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知p:2x2﹣3x+1≤0,q:x2﹣(2a+1)x+a(a+1)≤0
(1)若a=,且p∧q为真,求实数x的取值范围.
(2)若p是q的充分不必要条件,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,某公园内有两条道路,,现计划在上选择一点,新建道路,并把所在的区域改造成绿化区域.已知, .
(1)若绿化区域的面积为1,求道路的长度;
(2)若绿化区域改造成本为10万元/,新建道路成本为10万元/.设(),当为何值时,该计划所需总费用最小?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com