相关习题
 0  263516  263524  263530  263534  263540  263542  263546  263552  263554  263560  263566  263570  263572  263576  263582  263584  263590  263594  263596  263600  263602  263606  263608  263610  263611  263612  263614  263615  263616  263618  263620  263624  263626  263630  263632  263636  263642  263644  263650  263654  263656  263660  263666  263672  263674  263680  263684  263686  263692  263696  263702  263710  266669 

科目: 来源: 题型:

【题目】如图,在四棱锥中,,且

(1)证明:平面

(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】《数书九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即.已知满足 .且,则用以上给出的公式可求得的面积为____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正方形与梯形所在的平面互相垂直, ,点在线段上.

() 若点的中点,求证:平面

() 求证:平面平面

() 当平面与平面所成二面角的余弦值为时,求的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】在一次抽奖活动中,有6人获得抽奖机会,抽奖规则如下:若获一等奖后不再参加抽奖,获得二等奖的仍参加三等奖抽奖.现在主办方先从6人中随机抽取2人均获一等奖,再从余下的4人中随机抽取1人获二等奖,最后还从这4人中随机抽取1人获三等奖.

1)求能获一等奖的概率;

2)若已获一等奖,求能获奖的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了121日至125日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:

日期

122

123

124

温差

11

13

12

发芽数(颗)

25

30

26

1)请根据122日至124日的数据,求出关于的线性回归方程

2)该农科所确定的研究方案是:先用上面的3组数据求线性回归方程,再选取2组数据进行检验.若125日温差为,发芽数16颗,126日温差为,发芽数23颗.由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?

注:

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在等腰中,斜边为直角边上的一点,将沿直线折叠至的位置,使得点在平面外,且点在平面上的射影在线段上设,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆关于直线对称,圆心C在第二象限,半径为

(1)求圆C的方程.

(2)是否存在直线l与圆C相切,且在x轴、y轴上的截距相等?若存在,写出满足条件的直线条数(不要求过程);若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】郴州市某中学从甲乙两个教师所教班级的学生中随机抽取100人,每人分别对两个教师进行评分,满分均为100分,整理评分数据,将分数以10为组距分成6组:.得到甲教师的频率分布直方图,和乙教师的频数分布表:

乙教师分数频数分布表

分数区间

频数

3

3

15

19

35

25

(1)在抽样的100人中,求对甲教师的评分低于70分的人数;

(2)从对乙教师的评分在范围内的人中随机选出2人,求2人评分均在范围内的概率;

(3)如果该校以学生对老师评分的中位数是否大于80分作为衡量一个教师是否可评为该年度该校优秀教师的标准,则甲、乙两个教师中哪一个可评为年度该校优秀教师?(精确到0.1)

查看答案和解析>>

科目: 来源: 题型:

【题目】为坐标原点,上有两点满足关于直线轴对称.

(1)求的值;

(2)若,求线段的长及其中点坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆,且圆心在直线上.

Ⅰ)求此圆的方程

(Ⅱ)求与直线垂直且与圆相切的直线方程.

(Ⅲ)若点为圆上任意点,求的面积的最大值.

查看答案和解析>>

同步练习册答案