相关习题
 0  263517  263525  263531  263535  263541  263543  263547  263553  263555  263561  263567  263571  263573  263577  263583  263585  263591  263595  263597  263601  263603  263607  263609  263611  263612  263613  263615  263616  263617  263619  263621  263625  263627  263631  263633  263637  263643  263645  263651  263655  263657  263661  263667  263673  263675  263681  263685  263687  263693  263697  263703  263711  266669 

科目: 来源: 题型:

【题目】十九大提出:坚决打赢脱贫攻坚战,做到精准扶贫,某帮扶单位为帮助定点扶贫村真正脱贫,坚持扶贫同扶智相结合,帮助贫困村种植脐橙,并利用互联网电商进行销售,为了提高销量,现从该村的脐橙树上随机摘下100个脐橙进行测重,其质量(单位克)分布在区间[200500内,由统计的质量数据作出频率分布直方图如图所示.

1)按分层抽样的方法从质量在的脐橙中随机抽取5个,再从这5个脐橙中随机抽取2个,求这2个脐橙质量至少有一个不小于400克的概率;

2)以各组数据的中间数值代替这组数据的平均值,以频率代替概率,已知该村的脐橙种植地上大约还有100000个脐橙待出售,某电商提出两种收购方案:

A.所有脐橙均以7/千克收购;

B.低于350克的脐橙以2/个收购,其余的以3/个收购.

请你通过计算为该村选择收益较好的方案.

查看答案和解析>>

科目: 来源: 题型:

【题目】有形状和大小完全相同的小球装在三个盒子里,每个盒子装个.其中第一个盒子中有个球标有字母,有个球标有字母;第二个盒子中有个红球和个白球;第三个盒子中有个红球和个白球.现按如下规则进行试验:先在第一个盒子中随机抽取一个球,若取得字母的球,则在第二个盒子中任取一球;若取得字母的球,则在第三个盒子中任取一球.

(I)若第二次取出的是红球,则称试验成功,求试验成功的概率;

(II)若第二次在第二个盒子中取出红球,则得奖金元,取出白球则得奖金元.若第二次在第三个盒子中取出红球,则得奖金元,取出白球则得奖金元.求某人在一次试验中,所得奖金的分布列和期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知定点,定直线,动圆经过点且与直线相切.

(I)求动圆圆心的轨迹方程;

(II)设点为曲线上不同的两点,且,过两点分别作曲线的两条切线,且二者相交于点,求面积的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某班进行了次数学测试,其中甲、乙两人的成绩统计情况如茎叶图所示:

(I)该班数学老师决定从甲、乙两人中选派一人去参加数学比赛,你认为谁去更合适?并说明理由;

(II)从甲的成绩中人去两次作进一步的分析,在抽取的两次成绩中,求至少有一次成绩在之间的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为

(Ⅰ)求曲线的普通方程和曲线的直角坐标方程;

(Ⅱ)设点,曲线与曲线交于两点,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知正方体的棱长为,点EFG分别为棱AB的中点,下列结论中,正确结论的序号是___________.

①过EFG三点作正方体的截面,所得截面为正六边形;

平面EFG

平面

④异面直线EF所成角的正切值为

⑤四面体的体积等于.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,函数有两个零点

(Ⅰ)求实数的取值范围;

(Ⅱ)证明:

查看答案和解析>>

科目: 来源: 题型:

【题目】为发挥体育在核心素养时代的独特育人价值,越来越多的中学已将某些体育项目纳入到学生的必修课程,甚至关系到是否能拿到毕业证.某中学计划在高一年级开设游泳课程,为了解学生对游泳的兴趣,某数学研究性学习小组随机从该校高一年级学生中抽取了100人进行调查,其中男生60人,且抽取的男生中对游泳有兴趣的占,而抽取的女生中有15人表示对游泳没有兴趣.

(1)试完成下面的列联表,并判断能否有的把握认为“对游泳是否有兴趣与性别有关”?

有兴趣

没兴趣

合计

男生

女生

合计

(2)已知在被抽取的女生中有6名高一(1)班的学生,其中3名对游泳有兴趣,现在从这6名学生中随机抽取3人,求至少有2人对游泳有兴趣的概率.

(3)该研究性学习小组在调查中发现,对游泳有兴趣的学生中有部分曾在市级和市级以上游泳比赛中获奖,如下表所示.若从高一(8)班和高一(9)班获奖学生中各随机选取2人进行跟踪调查,记选中的4人中市级以上游泳比赛获奖的人数为,求随机变量的分布列及数学期望.

班级

市级比赛

获奖人数

2

2

3

3

4

4

3

3

4

2

市级以上比赛获奖人数

2

2

1

0

2

3

3

2

1

2

0.500

0.400

0.250

0.150

0.100

0.050

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数).

(1)若不等式的解集为,求的取值范围;

(2)当时,解不等式

(3)若不等式的解集为,若,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】轴交于两点(点在点的左侧),是分别过点的圆的切线,过此圆上的另一个点点是圆上任一不与重合的动点)作此圆的切线,分别交两点,且两直线交于点

)设切点坐标为,求证:切线的方程为

设点坐标为,试写出的关系表达式(写出详细推理与计算过程)

查看答案和解析>>

同步练习册答案