科目: 来源: 题型:
【题目】下面选项中错误的有( )
A.命题“若,则”的否命题为:“若,则”
B.“”是“”的充分不必要条件
C.命题“,使得”的否定是“,均有”
D.命题“若,则”的逆否命题为真命题
查看答案和解析>>
科目: 来源: 题型:
【题目】高三年级有500名学生,为了了解数学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:
分组 | 频数 | 频率 |
12 | ||
4 | ||
合计 |
根据上面图表,求处的数值
在所给的坐标系中画出的频率分布直方图;
根据题中信息估计总体平均数,并估计总体落在中的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)将的方程化为普通方程,将的方程化为直角坐标方程;
(Ⅱ)已知直线的参数方程为,为参数,且,与交于点,与交于点,且,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知两点分别在轴和轴上运动,且,若动点满足.
(1)求出动点P的轨迹对应曲线C的标准方程;
(2)一条纵截距为2的直线与曲线C交于P,Q两点,若以PQ直径的圆恰过原点,求出直线方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,椭圆的左右焦点、恰好是等轴双曲线的左右顶点,且椭圆的离心率为,是双曲线上异于顶点的任意一点,直线和与椭圆的交点分别记为、和、.
(1)求椭圆的方程;
(2)设直线、的斜率分别为、,求证:为定值;
(3)若存在点满足,试求的大小.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,要在河岸的一侧修建一条休闲式人行道,进行图纸设计时,建立了图中所示坐标系,其中,在轴上,且,道路的前一部分为曲线段,该曲线段为二次函数在时的图像,最高点为,道路中间部分为直线段,,且,道路的后一段是以为圆心的一段圆弧.
(1)求的值;
(2)求的大小;
(3)若要在扇形区域内建一个“矩形草坪”,在圆弧上运动,、在上,记,则当为何值时,“矩形草坪”面积最大.
查看答案和解析>>
科目: 来源: 题型:
【题目】圆锥如图①所示,图②是它的正(主)视图.已知圆的直径为, 是圆周上异于的一点, 为的中点.
(I)求该圆锥的侧面积S;
(II)求证:平面⊥平面;
(III)若∠CAB=60°,在三棱锥中,求点到平面的距离.
查看答案和解析>>
科目: 来源: 题型:
【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费元;重量超过的包裹,除收费元之外,超过的部分,每超出(不足时按计算)需再收元.公司从承揽过的包裹中,随机抽取件,其重量统计如下:
公司又随机抽取了天的揽件数,得到频数分布表如下:
以记录的天的揽件数的频率作为各揽件数发生的概率
计算该公司天中恰有天揽件数在的概率;
估计该公司对每件包裹收取的快递费的平均值;
公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用做其他费用,目前前台有工作人员人,每人每天揽件不超过件,每人每天工资元,公司正在考虑是否将前台工作人员裁减人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润有利?(同一组中的揽件数以这组数据所在区间中点值作代表)
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系的极坐标方程为,直线l的参数方程为,(其中为参数)直线l与交于A,B两个不同的点.
求倾斜角的取值范围;
求线段AB中点P的轨迹的参数方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com