科目: 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆的离心率为,且过点.
(1)求椭圆的方程;
(2)设点,点在轴上,过点的直线交椭圆交于,两点.
①若直线的斜率为,且,求点的坐标;
②设直线,,的斜率分别为,,,是否存在定点,使得恒成立?若存在,求出点坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某家具厂有方木料90,五合板600,准备加工成书桌和书橱出售.已知生产第张书桌需要方木料O.l,五合板2,生产每个书橱而要方木料0.2,五合板1,出售一张方桌可获利润80元,出售一个书橱可获利润120元.
(1)如果只安排生产书桌,可获利润多少?
(2)怎样安排生产可使所得利润最大?
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面立角坐标系中,过点的圆的圆心在轴上,且与过原点倾斜角为的直线相切.
(1)求圆的标准方程;
(2)点在直线上,过点作圆的切线、,切点分别为、,求经过、、、四点的圆所过的定点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】某部门在同一上班高峰时段对甲、乙两座地铁站各随机抽取了50名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,乘车等待时间不超过40分钟).将统计数据按,,,分组,制成频率分布直方图:
(1)求的值;
(2)记表示事件“在上班高峰时段某乘客在甲站乘车等待时间少于20分钟”,试估计的概率;
(3)假设同组中的每个数据用该组区间左端点值来估计,记在上班高峰时段甲、乙两站各抽取的50名乘客乘车的平均等待时间分别为,,求的值,并直接写出与的大小关系.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆:,长半轴长与短半轴长的差为,离心率为.
(1)求椭圆的标准方程;
(2)若在轴上存在点,过点的直线分别与椭圆相交于、两点,且为定值,求点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点为椭圆上任意一点,直线与圆交于两点,点为椭圆的左焦点.
(Ⅰ)求椭圆的离心率及左焦点的坐标;
(Ⅱ)求证:直线与椭圆相切;
(Ⅲ)判断是否为定值,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】天坛公园是明、清两代皇帝“祭天”“祈谷”的场所.天坛公园中的圜丘台共有三层(如图1所示),上层坛的中心是一块呈圆形的大理石板,从中心向外围以扇面形石(如图2所示).上层坛从第一环至第九环共有九环,中层坛从第十环至第十八环共有九环,下层坛从第十九环至第二十七环共有九环;第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块,则第二十七环的扇面形石块数是______;上、中、下三层坛所有的扇面形石块数是_______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com