相关习题
 0  263557  263565  263571  263575  263581  263583  263587  263593  263595  263601  263607  263611  263613  263617  263623  263625  263631  263635  263637  263641  263643  263647  263649  263651  263652  263653  263655  263656  263657  263659  263661  263665  263667  263671  263673  263677  263683  263685  263691  263695  263697  263701  263707  263713  263715  263721  263725  263727  263733  263737  263743  263751  266669 

科目: 来源: 题型:

【题目】顺次连接椭圆的四个顶点恰好构成了一个边长为且面积为的菱形。

(1)求椭圆的方程;

(2)是椭圆上的两个不同点,若直线的斜率之积为(以为坐标原点),线段上有一点满足,连接并延长交椭圆于点,求椭圆的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆与圆关于直线对称.

1)求圆的方程;

2)过点作两条相异直线分别与圆相交于两点,若直线的倾斜角互补,问直线与直线是否垂直?请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱锥中,已知是正三角形,平面平面的中点,在棱上,且.

1)求证:平面

2)若的中点,问上是否存在一点,使平面?若存在,说明点的位置;若不存在,试说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】随着互联网+交通模式的迅猛发展,共享助力单车在很多城市相继出现.共享助力单车运营公司为了解某地区用户对该公司所提供的服务的满意度,随机调查了200名用户,得到用户的满意度评分,现将评分分为5组,如下表:

组别

满意度评分

频数

12

28

68

40

频率

0.06

0.34

0.2

1)求表格中的的值;

2)估计用户的满意度评分的平均数;

3)若从这200名用户中随机抽取50人,估计满意度评分高于6分的人数为多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】下列四种说法中正确的有______.(填序号)①数据22334673的众数与中位数相等;②数据13579的方差是数据26101418的方差的一半;③一组数据的方差大小反映该组数据的波动性,若方差越大,则波动性越大,方差越小,则波动性越小.④频率分布直方图中各小长方形的面积等于相应各组的频数.

查看答案和解析>>

科目: 来源: 题型:

【题目】现要完成下列3项抽样调查:①从20罐奶粉中抽取4罐进行食品安全卫生检查;②从某社区100户高收入家庭,270户中等收入家庭,80户低收入家庭中选出45户进行消费水平调查;③某中学报告厅有28排,每排有35个座位,一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请28名听众进行座谈.较为合理的抽样方法是(

A.①系统抽样;②简单随机抽样;③分层抽样

B.①简单随机抽样;②分层抽样;③系统抽样

C.①分层抽样;②系统抽样;③简单随机抽样

D.①简单随机抽样;②系统抽样;③分层抽样

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在正方体中,点是底面的中心,是线段的上一点。

(1)若的中点,求直线与平面所成角的正弦值;

(2)能否存在点使得平面平面,若能,请指出点的位置关系,并加以证明;若不能,请说明理由。

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

1)当时,求关于的不等式的解集;

2)若,求关于的不等式的解集.

查看答案和解析>>

科目: 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,曲线:为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线.

(1)说明是哪一种曲线,并将的方程化为极坐标方程;

(2)若直线的方程为,设的交点为的交点为,若的面积为,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】随着“北京八分钟”在韩国平昌冬奥会惊艳亮相,冬奥会正式进入了北京周期,全社会对冬奥会的热情空前高涨.

(1)为迎接冬奥会,某社区积极推动冬奥会项目在社区青少年中的普及,并统计了近五年来本社区冬奥项目青少年爱好者的人数(单位:人)与时间(单位:年),列表如下:

依据表格给出的数据,是否可用线性回归模型拟合的关系,请计算相关系数并加以说明(计算结果精确到0.01).

(若,则线性相关程度很高,可用线性回归模型拟合)

附:相关系数公式,参考数据.

(2)某冰雪运动用品专营店为吸引广大冰雪爱好者,特推出两种促销方案.

方案一:每满600元可减100元;

方案二:金额超过600元可抽奖三次,每次中奖的概率同为 ,且每次抽奖互不影响,中奖1次打9折,中奖2次打8折,中奖3次打7折. v

两位顾客都购买了1050元的产品,并且都选择第二种优惠方案,求至少有一名顾客比选择方案一更优惠的概率;

②如果你打算购买1000元的冰雪运动用品,请从实际付款金额的数学期望的角度分析应该选择哪种优惠方案.

查看答案和解析>>

同步练习册答案