科目: 来源: 题型:
【题目】顺次连接椭圆的四个顶点恰好构成了一个边长为且面积为的菱形。
(1)求椭圆的方程;
(2),是椭圆上的两个不同点,若直线,的斜率之积为(以为坐标原点),线段上有一点满足,连接并延长交椭圆于点,求椭圆的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三棱锥中,已知是正三角形,平面平面,,为的中点,在棱上,且.
(1)求证:平面;
(2)若为的中点,问上是否存在一点,使平面?若存在,说明点的位置;若不存在,试说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】随着“互联网+交通”模式的迅猛发展,“共享助力单车”在很多城市相继出现.某“共享助力单车”运营公司为了解某地区用户对该公司所提供的服务的满意度,随机调查了200名用户,得到用户的满意度评分,现将评分分为5组,如下表:
组别 | 一 | 二 | 三 | 四 | 五 |
满意度评分 | |||||
频数 | 12 | 28 | 68 | 40 | |
频率 | 0.06 | 0.34 | 0.2 |
(1)求表格中的,,的值;
(2)估计用户的满意度评分的平均数;
(3)若从这200名用户中随机抽取50人,估计满意度评分高于6分的人数为多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】下列四种说法中正确的有______.(填序号)①数据2,2,3,3,4,6,7,3的众数与中位数相等;②数据1,3,5,7,9的方差是数据2,6,10,14,18的方差的一半;③一组数据的方差大小反映该组数据的波动性,若方差越大,则波动性越大,方差越小,则波动性越小.④频率分布直方图中各小长方形的面积等于相应各组的频数.
查看答案和解析>>
科目: 来源: 题型:
【题目】现要完成下列3项抽样调查:①从20罐奶粉中抽取4罐进行食品安全卫生检查;②从某社区100户高收入家庭,270户中等收入家庭,80户低收入家庭中选出45户进行消费水平调查;③某中学报告厅有28排,每排有35个座位,一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请28名听众进行座谈.较为合理的抽样方法是( )
A.①系统抽样;②简单随机抽样;③分层抽样
B.①简单随机抽样;②分层抽样;③系统抽样
C.①分层抽样;②系统抽样;③简单随机抽样
D.①简单随机抽样;②系统抽样;③分层抽样
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在正方体中,点是底面的中心,是线段的上一点。
(1)若为的中点,求直线与平面所成角的正弦值;
(2)能否存在点使得平面平面,若能,请指出点的位置关系,并加以证明;若不能,请说明理由。
查看答案和解析>>
科目: 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系中,曲线:(,为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线:.
(1)说明是哪一种曲线,并将的方程化为极坐标方程;
(2)若直线的方程为,设与的交点为,,与的交点为,,若的面积为,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】随着“北京八分钟”在韩国平昌冬奥会惊艳亮相,冬奥会正式进入了北京周期,全社会对冬奥会的热情空前高涨.
(1)为迎接冬奥会,某社区积极推动冬奥会项目在社区青少年中的普及,并统计了近五年来本社区冬奥项目青少年爱好者的人数(单位:人)与时间(单位:年),列表如下:
依据表格给出的数据,是否可用线性回归模型拟合与的关系,请计算相关系数并加以说明(计算结果精确到0.01).
(若,则线性相关程度很高,可用线性回归模型拟合)
附:相关系数公式,参考数据.
(2)某冰雪运动用品专营店为吸引广大冰雪爱好者,特推出两种促销方案.
方案一:每满600元可减100元;
方案二:金额超过600元可抽奖三次,每次中奖的概率同为 ,且每次抽奖互不影响,中奖1次打9折,中奖2次打8折,中奖3次打7折. v
两位顾客都购买了1050元的产品,并且都选择第二种优惠方案,求至少有一名顾客比选择方案一更优惠的概率;
②如果你打算购买1000元的冰雪运动用品,请从实际付款金额的数学期望的角度分析应该选择哪种优惠方案.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com