相关习题
 0  263564  263572  263578  263582  263588  263590  263594  263600  263602  263608  263614  263618  263620  263624  263630  263632  263638  263642  263644  263648  263650  263654  263656  263658  263659  263660  263662  263663  263664  263666  263668  263672  263674  263678  263680  263684  263690  263692  263698  263702  263704  263708  263714  263720  263722  263728  263732  263734  263740  263744  263750  263758  266669 

科目: 来源: 题型:

【题目】高考改革是教育体制改革中的重点领域和关键环节,全社会极其关注.近年来,在新高考改革中,打破文理分科的“”模式初露端倪.其中“”指必考科目语文、数学、外语,“”指考生根据本人兴趣特长和拟报考学校及专业的要求,从物理、化学、生物、历史、政治、地理六科中选择门作为选考科目,其中语、数、外三门课各占分,选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分.假定省规定:选考科目按考生成绩从高到低排列,按照占总体的,以此赋分分、分、分、分.为了让学生们体验“赋分制”计算成绩的方法,省某高中高一()班(共人)举行了以此摸底考试(选考科目全考,单科全班排名,每名学生选三科计算成绩),已知这次摸底考试中的物理成绩(满分分)频率分布直方图,化学成绩(满分分)茎叶图如下图所示,小明同学在这次考试中物理分,化学多分.

(1)求小明物理成绩的最后得分;

(2)若小明的化学成绩最后得分为分,求小明的原始成绩的可能值;

(3)若小明必选物理,其他两科在剩下的五科中任选,求小明此次考试选考科目包括化学的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆,定义椭圆上的点的“伴随点”为.

(1)求椭圆上的点的“伴随点”的轨迹方程;

(2)如果椭圆上的点的“伴随点”为,对于椭圆上的任意点及它的“伴随点”,求的取值范围;

(3)当 时,直线交椭圆 两点,若点 的“伴随点”分别是 ,且以为直径的圆经过坐标原点,求的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】曲线C是平面内与两个定点的距离之积等于常数的点的轨迹,给出下列三个结论:

①曲线过坐标原点;②曲线关于坐标原点对称;

③曲线关于横轴对称;④曲线关于纵轴对称;

⑤曲线关于对称;⑥若点P在曲线上,则的面积不大于.

其中,所有正确结论的序号是______

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,判断函数的单调性;

(Ⅱ)当时,证明:.(为自然对数的底数)

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,直线过点且与直线垂直,直线轴交于点,点与点关于轴对称,动点满足.

(Ⅰ)求动点的轨迹的方程;

(Ⅱ)过点的直线与轨迹相交于两点,设点,直线的斜率分别为,问是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆的圆心在直线上,且圆相切于点.过点作两条斜率之积为-2的直线分别交圆.

1)求圆的标准方程;

2)设线段的中点分别为,证明:直线恒过定点.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线轴交于点,直线与抛物线交于点两点.直线,分别交椭圆于点,不重合)

(1)求证:

(2)若,求直线的斜率的值;

(3)若为坐标原点,直线交椭圆,若,且,则是否为定值?若是,求出定值;若不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了纪念“一带一路”倡议提出五周年,某城市举办了一场知识竞赛,为了了解市民对“一带一路”知识的掌握情况,从回收的有效答卷中按青年组和老年组各随机抽取了40份答卷,发现成绩都在内,现将成绩按区间,,,进行分组,绘制成如下的频率分布直方图.

青年组

中老年组

(1)利用直方图估计青年组的中位数和老年组的平均数;

(2)从青年组,的分数段中,按分层抽样的方法随机抽取5份答卷,再从中选出3份答卷对应的市民参加政府组织的座谈会,求选出的3位市民中有2位来自分数段的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列说法正确的个数是( ).

①“若,则,中至少有一个不小于2”的逆命题是真命题;

②命题“设,若,则”是一个真命题;

③命题,,则的必要不充分条件;

④命题“,使得”的否定是:“,均有”.

A.4B.3C.2D.1

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线轴交于点,直线与抛物线交于点两点.直线,分别交椭圆于点,不重合)

(1)求证:

(2)若,求直线的斜率的值;

(3)若为坐标原点,直线交椭圆,若,且,则是否为定值?若是,求出定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案