科目: 来源: 题型:
【题目】如图,正△ABC的边长为4,CD是AB边上的高,E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B.
(1)试判断直线AB与平面DEF的位置关系,并说明理由;
(2)求棱锥E-DFC的体积;
(3)在线段BC上是否存在一点P,使AP⊥DE?如果存在,求出的值;如果不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间与乘客等候人数之间的关系,经过调查得到如下数据:
间隔时间(分钟) | 10 | 11 | 12 | 13 | 14 | 15 |
等候人数(人) | 23 | 25 | 26 | 29 | 28 | 31 |
调查小组先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数的差,若差值的绝对值不超过1,则称所求方程是“恰当回归方程”.
(1)若选取的是后面4组数据,求关于的线性回归方程;
(2)判断(1)中的方程是否是“恰当回归方程”;
(3)为了使等候的乘客不超过35人,试用(1)中方程估计间隔时间最多可以设置为多少(精确到整数)分钟?
附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为: ,.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知椭圆的左焦点为,过点F做x轴的垂线交椭圆于A,B两点,且.
(1)求椭圆C的标准方程:
(2)若M,N为椭圆上异于点A的两点,且直线的倾斜角互补,问直线MN的斜率是否为定值?若是,求出这个定值;若不是,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】袋子中有四个小球,分别写有“和、平、世、界”四个字,有放回地从中任取一个小球,直到“和”“平”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“和、平、世、界”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下24个随机数组:
232 321 230 023 123 021 132 220 011 203 331 100
231 130 133 231 031 320 122 103 233 221 020 132
由此可以估计,恰好第三次就停止的概率为( )
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】根据某水文观测点的历史统计数据,得到某河流水位(单位:米)的频率分布直方图如下.将河流水位在,,,,,,各段内的频率作为相应段的概率,并假设每年河流水位变化互不影响.
(1)求未来4年中,至少有2年该河流水位的概率(结果用分数表示).
(2)已知该河流对沿河工厂的影响如下:当时,不会造成影响;当时,损失50000元;当时,损失300000元.为减少损失,工厂制定了三种应对方案.
方案一:不采取措施;
方案二:防御不超过30米的水位,需要工程费用8000元;
方案三:防御34米的最高水位,需要工程费用20000元.
试问哪种方案更好,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com