相关习题
 0  263571  263579  263585  263589  263595  263597  263601  263607  263609  263615  263621  263625  263627  263631  263637  263639  263645  263649  263651  263655  263657  263661  263663  263665  263666  263667  263669  263670  263671  263673  263675  263679  263681  263685  263687  263691  263697  263699  263705  263709  263711  263715  263721  263727  263729  263735  263739  263741  263747  263751  263757  263765  266669 

科目: 来源: 题型:

【题目】如图,正△ABC的边长为4CDAB边上的高,EF分别是ACBC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B

1)试判断直线AB与平面DEF的位置关系,并说明理由;

2)求棱锥E-DFC的体积;

3)在线段BC上是否存在一点P,使AP⊥DE?如果存在,求出的值;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示单位:cm,四边形ABCD是直角梯形,求图中阴影部分绕AB旋转一周所成几何体的表面积和体积

查看答案和解析>>

科目: 来源: 题型:

【题目】某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间与乘客等候人数之间的关系,经过调查得到如下数据:

间隔时间(分钟)

10

11

12

13

14

15

等候人数(人)

23

25

26

29

28

31

调查小组先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数的差,若差值的绝对值不超过1,则称所求方程是恰当回归方程”.

1)若选取的是后面4组数据,求关于的线性回归方程

2)判断(1)中的方程是否是恰当回归方程

3)为了使等候的乘客不超过35人,试用(1)中方程估计间隔时间最多可以设置为多少(精确到整数)分钟?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为: .

查看答案和解析>>

科目: 来源: 题型:

【题目】已知顶点在原点,焦点在x轴的负半轴的抛物线截直线y=x所得的弦长|P1P2|=4,求此抛物线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知椭圆的左焦点为,过点F做x轴的垂线交椭圆于A,B两点,且

(1)求椭圆C的标准方程:

(2)若M,N为椭圆上异于点A的两点,且直线的倾斜角互补,问直线MN的斜率是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】袋子中有四个小球,分别写有“和、平、世、界”四个字,有放回地从中任取一个小球,直到“和”“平”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“和、平、世、界”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下24个随机数组:

232 321 230 023 123 021 132 220 011 203 331 100

231 130 133 231 031 320 122 103 233 221 020 132

由此可以估计,恰好第三次就停止的概率为( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)证明:函数在其定义域上是单调递增函数.

2)设,当时,不等式恒成立,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】为椭圆上的点,是两焦点,若,则的面积是( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】根据某水文观测点的历史统计数据,得到某河流水位(单位:米)的频率分布直方图如下.将河流水位在各段内的频率作为相应段的概率,并假设每年河流水位变化互不影响.

1)求未来4年中,至少有2年该河流水位的概率(结果用分数表示).

2)已知该河流对沿河工厂的影响如下:当时,不会造成影响;当时,损失50000元;当时,损失300000.为减少损失,工厂制定了三种应对方案.

方案一:不采取措施;

方案二:防御不超过30米的水位,需要工程费用8000元;

方案三:防御34米的最高水位,需要工程费用20000.

试问哪种方案更好,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)若恒成立,求处的切线方程;

(2)若有且只有两个整数解,求的取值范围.

查看答案和解析>>

同步练习册答案