科目: 来源: 题型:
【题目】下列说法中,正确的序号是( )
①“b=2”是“1,b,4成等比数列”的充要条件;
②“双曲线与椭圆有共同焦点”是真命题;
③若命题p∨¬q为假命题,则q为真命题;
④命题p:x∈R,x2﹣x+1>0的否定是:x∈R,使得x2﹣x+1≤0.
A.①②B.②③④C.②③D.②④
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数,直线:.
(Ⅰ)设是图象上一点,为原点,直线的斜率,若 在 上存在极值,求的取值范围;
(Ⅱ)是否存在实数,使得直线是曲线的切线?若存在,求出的值;若不存在,说明理由;
(Ⅲ)试确定曲线与直线的交点个数,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知双曲线的方程为,离心率,顶点到渐近线的距离为
(1)求双曲线的方程;
(2)设是双曲线上点,,两点在双曲线的两条渐近线上,且分别位于第一、二象限,若,求面积的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】2019年全国“两会”,即中华人民共和国第十三届全国人大二次会议和中国人民政治协商会议第十三届全国委员会第二次会议,分别于2019年3月5日和3月3日在北京召开.为了了解哪些人更关注“两会”,某机构随机抽取了年龄在15~75岁之间的200人进行调查,并按年龄绘制的频率分布直方图如下图所示,把年龄落在区间[15,35)和[35,75]内的人分别称为“青少年人”和“中老年人”.经统计“青少年人”和“中老年人”的人数之比为19:21.其中“青少年人”中有40人关注“两会”,“中老年人”中关注“两会”和不关注“两会”的人数之比是2:1.
(Ⅰ)求图中的值;
(Ⅱ)现采用分层抽样在[25,35)和[45,55)中随机抽取8名代表,从8人中任选2人,求2人中至少有1个是“中老年人”的概率是多少?
(Ⅲ)根据已知条件,完成下面的2×2列联表,并根据此统计结果判断:能否有99.9%的把握认为“中老年人”比“青少年人”更加关注“两会”?
关注 | 不关注 | 合计 | |
青少年人 | |||
中老年人 | |||
合计 |
查看答案和解析>>
科目: 来源: 题型:
【题目】某中学根据学生的兴趣爱好,分别创建了“书法”、“诗词”、“理学”三个社团,据资料统计新生通过考核选拔进入这三个社团成功与否相互独立.2015年某新生入学,假设他通过考核选拔进入该校的“书法”、“诗词”、“理学”三个社团的概率依次为、、,己知三个社团他都能进入的概率为,至少进入一个社团的概率为,且.
(1)求与的值;
(2)该校根据三个社团活动安排情况,对进入“书法”社的同学增加校本选修学分1分,对进入“诗词”社的同学增加校本选修学分2分,对进入“理学”社的同学增加校本选修学分3分.求该新同学在社团方面获得校本选修课学分分数不低于4分的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】(本题满分12分)已知椭圆,直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为.
(Ⅰ)证明:直线的斜率与的斜率的乘积为定值;
(Ⅱ)若过点,延长线段与交于点,四边形能否为平行四边形?若能,求此时的斜率,若不能,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C: 的右焦点为F(2,0),过点F的直线交椭圆于M、N两点且MN的中点坐标为 .
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l不经过点P(0,b)且与C相交于A,B两点,若直线PA与直线PB的斜率的和为1,试判断直线 l是否经过定点,若经过定点,请求出该定点;若不经过定点,请给出理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|=
A. B. 3 C. D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com