相关习题
 0  263619  263627  263633  263637  263643  263645  263649  263655  263657  263663  263669  263673  263675  263679  263685  263687  263693  263697  263699  263703  263705  263709  263711  263713  263714  263715  263717  263718  263719  263721  263723  263727  263729  263733  263735  263739  263745  263747  263753  263757  263759  263763  263769  263775  263777  263783  263787  263789  263795  263799  263805  263813  266669 

科目: 来源: 题型:

【题目】已知圆与圆.

1)若圆与圆外切,求实数m的值;

2)在(1)的条件下,若直线l与圆的相交弦长为且过点,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知底面边长为a的正三棱柱(底面是等边三角形的直三棱柱)的六个顶点在球上,且球与此正三棱柱的5个面都相切,则球与球的表面积之比为________.

查看答案和解析>>

科目: 来源: 题型:

【题目】如果底面是菱形的直棱柱(侧棱与底面垂直的棱柱)的所有棱长都相等,EMN分别为的中点,现有下列四个结论:①平面平面④异面真线MN所成的角的余弦值为,其中正确结论的个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标平面内,已知,其中为正整数,对于平面上任意一点,记关于的对称点,关于的对称点,…关于的对称点.

1)求向量的坐标;

2)对于任意偶数,用表示向量的坐标;

3)当点在函数图像上移动时,点形成的是函数的图像,其中是以3为周期的周期函数,且当时,,求:函数上的解析式.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆分别是椭圆短轴的上下两个端点;是椭圆的左焦点,P是椭圆上异于点的点,是边长为4的等边三角形.

(1)写出椭圆的标准方程;

(2)设点R满足:.求证:的面积之比为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】高二年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:(   )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在底面是正方形的四棱锥中,平面的中点.

(1)求证:平面

(2)在线段上是否存在点,使得平面?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知四边形,点为线段的中点,且 . .现将△沿进行翻折,使得 °,得到图形如图所示,连接.

(Ⅰ)若点在线段上,证明:

(Ⅱ)若点为的中点,求点到平面的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】某工厂用甲、乙两种不同工艺生产一大批同一种零件,零件尺寸均在[21.7,22.3](单位:cm)之间的零件,把零件尺寸在[21.9,22.1)的记为一等品,尺寸在[21.8,21.9)[22.1,22.2)的记为二等品,尺寸在[21.7,21.8)[22.2,22.3]的记为三等品,现从甲、乙工艺生产的零件中各随机抽取100件产品,所得零件尺寸的频率分布直方图如图所示:

(Ⅰ)根据上述数据完成下列2×2列联表,根据此数据你认为选择不同的工艺与一等品产出率是否有关?

甲工艺

乙工艺

总计

一等品

非一等品

总计

P(K2≥k)

0.1

0.05

0.01

k

2.706

3.841

6.635

附:,其中

(Ⅱ)以上述两种工艺中各种产品的频率作为相应产品产出的概率,若一等品、二等品、三等品的单件利润分别为30元、20元、15元,从一件产品的平均利润考虑,你认为以后该工厂应该选择哪种工艺生产该种零件?请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某运动队从四位运动员中选拔一人参加某项赛事,在选拔结果公布前,甲、乙、丙、丁四位教练对这四位运动员预测如下:甲说:“是被选中”; 乙说:“是被选中”;丙说:“均未被选中”; 丁说:“是被选中”.若这四位教练中只有两位说的话是对的,则获得参赛资格的运动员是____

查看答案和解析>>

同步练习册答案