相关习题
 0  263632  263640  263646  263650  263656  263658  263662  263668  263670  263676  263682  263686  263688  263692  263698  263700  263706  263710  263712  263716  263718  263722  263724  263726  263727  263728  263730  263731  263732  263734  263736  263740  263742  263746  263748  263752  263758  263760  263766  263770  263772  263776  263782  263788  263790  263796  263800  263802  263808  263812  263818  263826  266669 

科目: 来源: 题型:

【题目】定义函数(0,)为型函数,共中

(1)若型函数,求函数的值域;

(2)若型函数,求函数极值点个数;

(3)若型函数,在上有三点A、B、C横坐标分別为,其中,试判断直线AB的斜率与直线BC的斜率的大小并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】给定椭圆,称圆心在原点,半径为的圆是椭圆准圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.

(1)求椭圆的方程和其准圆方程;

(2)设椭圆短轴的一个端点为,长轴的一个端点为,点 准圆上一动点,求三角形面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,过点P(0,1)且互相垂直的两条直线分別与圆O:交于点A,B,与圆M:(x﹣2)2+(y﹣1)2=1交于点C,D.

(1)若AB=,求CD的长;

(2)若CD中点为E,求△ABE面积的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知等腰梯形.现将沿着折起,使得面,点F为线段BC上一动点.

1)证明:

2)如果FBC中点,证明:

3)若二面角的余弦值为,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交元的管理费,预计当每件商品的售价为元时,一年的销售量为万件.

1)求该连锁分店一年的利润(万元)与每件商品的售价的函数关系式

2)当每件商品的售价为多少元时,该连锁分店一年的利润最大,并求出的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】目前用外卖网点餐的人越来越多.现对大众等餐所需时间情况进行随机调查,并将所得数据绘制成频率分布直方图(如图).其中等餐所需时间的范围是,样本数据分组为

(1)求直方图中的值;

(2)某同学在某外卖网点了一份披萨,试估计他等餐时间不多于小时的概率;

(3)现有名学生都分别通过外卖网进行了点餐,这名学生中等餐所需时间少于小时的人数记为,求的分布列和数学期望.(以直方图中的频率作为概率)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在多面体中,底面为矩形,侧面为梯形,.

1)求证:

2)求证:平面.

查看答案和解析>>

科目: 来源: 题型:

【题目】某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选出了三个科目作为选考科目.若一名学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.某学校为了了解高一年级200名学生选考科目的意向,随机选取20名学生进行了一次调查,统计选考科目人数如下表:

性别

选考方案确定情况

物理

化学

生物

历史

地理

政治

男生

选考方案确定的有5

5

5

2

1

2

0

选考方案待确定的有7

6

4

3

2

4

2

女生

选考方案确定的有6

3

5

2

3

3

2

选考方案待确定的有2

1

2

1

0

1

1

(1)在选考方案确定的男生中,同时选考物理、化学、生物的人数有多少?

(2)从选考方案确定的男生中任选2名,试求出这2名学生选考科目完全相同的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】1)已知双曲线与椭圆有相同焦点,且过点,求双曲线标准方程;

2)已知椭圆的一个焦点为,椭圆上一点到焦点的最大距离是3,求这个椭圆的离心率.

查看答案和解析>>

科目: 来源: 题型:

【题目】邗江中学高二年级某班某小组共10人,利用寒假参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中选出2人作为该组代表参加座谈会.

(1)记“选出2人参加义工活动的次数之和为4”为事件,求事件发生的概率;

(2)设为选出2人参加义工活动次数之差的绝对值,求随机变量的分布列和数学期望.

查看答案和解析>>

同步练习册答案