相关习题
 0  263634  263642  263648  263652  263658  263660  263664  263670  263672  263678  263684  263688  263690  263694  263700  263702  263708  263712  263714  263718  263720  263724  263726  263728  263729  263730  263732  263733  263734  263736  263738  263742  263744  263748  263750  263754  263760  263762  263768  263772  263774  263778  263784  263790  263792  263798  263802  263804  263810  263814  263820  263828  266669 

科目: 来源: 题型:

【题目】某书店为了了解销售单价(单位:元)在内的图书销售情况,从2018年上半年已经销售的图书中随机抽取100本,获得的所有样本数据按照分成6组,制成如图所示的频率分布直方图,已知样本中销售单价在内的图书数是销售单价在内的图书数的2.

1)求出xy,再根据频率分布直方图佔计这100本图书销售单价的平均数、中位数(同一组中的数据用该组区间的中点值作代表);

2)用分层抽样的方法从销售单价在内的图书中共抽取40本,求单价在6组样本数据中的图书销售的数量;

3)从(2)中抽取且价格低于12元的书中任取2本,求这2本书价格都不低于10元的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了解全市统考情况,从所有参加考试的考生中抽取4000名考生的成绩,频率分布直方图如下图所示.

(1)求这4000名考生的半均成绩(同一组中数据用该组区间中点作代表);

2)由直方图可认为考生考试成绩z服从正态分布,其中分别取考生的平均成绩和考生成绩的方差,那么抽取的4000名考生成绩超过84.81分(含84.81分)的人数估计有多少人?

3)如果用抽取的考生成绩的情况来估计全市考生的成绩情况,现从全市考生中随机抽取4名考生,记成绩不超过84.81分的考生人数为,求.(精确到0.001

附:

,则

.

查看答案和解析>>

科目: 来源: 题型:

【题目】1)已知两个变量线性相关,若它们的相关性越强,则相关系数的绝对值越接近于1.

2)线性回归直线必过点

3)对于分类变量AB的随机变量越大说明AB有关系的可信度越大.

4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数的值越大,说明拟合的效果越好.

5)根据最小二乘法由一组样本点,求得的回归方程是,对所有的解释变量,的值一定与有误差.

以上命题正确的序号为____________.

查看答案和解析>>

科目: 来源: 题型:

【题目】设直线ly=2x+2,若l与椭圆 的交点为A,B,点P为椭圆上的动点,则使△PAB的面积为 的点P的个数为(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线的对称轴为坐标轴,顶点是坐标原点,准线方程为,直线与抛物线相交于不同的 两点.

(1)求抛物线的标准方程;

(2)如果直线过抛物线的焦点,求的值;

(3)如果,直线是否过一定点,若过一定点,求出该定点;若不过一定点,试说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

时,讨论函数的单调性;

求函数在区间上零点的个数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,圆OD为圆O上任意一点,过D作圆O的切线分别交直线EF两点,连AFBE交于点G,若点G形成的轨迹为曲线C

AFBE斜率分别为,求的值并求曲线C的方程;

设直线l与曲线C有两个不同的交点PQ,与直线交于点S,与直线交于点T,求的面积与面积的比值的最大值及取得最大值时m的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,在边长为2的菱形中,,将沿对角线折起到的位置,使平面平面的中点,平面,且,如图2.

1)求证:平面

2)求平面与平面所成角的余弦值;

3)在线段上是否存在一点,使得平面?若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C (a>b>0)的一个顶点为A(2,0),离心率为.直线yk(x-1)与椭圆C交于不同的两点MN.

(1)求椭圆C的方程;

(2)当△AMN的面积为时,求k的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某市政府为了节约生活用电,计划在本市试行居民生活用电定额管理,即确定一户居民月用电量标准a,用电量不超过a的部分按平价收费,超出a的部分按议价收费为此,政府调查了100户居民的月平均用电量单位:度,以分组的频率分布直方图如图所示.

根据频率分布直方图的数据,求直方图中x的值并估计该市每户居民月平均用电量的值;

用频率估计概率,利用的结果,假设该市每户居民月平均用电量X服从正态分布

估计该市居民月平均用电量介于度之间的概率;

利用的结论,从该市所有居民中随机抽取3户,记月平均用电量介于度之间的户数为,求的分布列及数学期望

查看答案和解析>>

同步练习册答案