相关习题
 0  263660  263668  263674  263678  263684  263686  263690  263696  263698  263704  263710  263714  263716  263720  263726  263728  263734  263738  263740  263744  263746  263750  263752  263754  263755  263756  263758  263759  263760  263762  263764  263768  263770  263774  263776  263780  263786  263788  263794  263798  263800  263804  263810  263816  263818  263824  263828  263830  263836  263840  263846  263854  266669 

科目: 来源: 题型:

【题目】如图给出的是某高校土木工程系大四年级55名学生期末考试专业成绩的频率分布折线图(连接频率分布直方图中各小长方形上端的中点),其中组距为10,且本次考试中最低分为50分,最高分为100分.根据图中所提供的信息,则下列结论中正确的是( )

A. 成绩是75分的人数有20人

B. 成绩是100分的人数比成绩是50分的人数多

C. 成绩落在70-90分的人数有35人

D. 成绩落在75-85分的人数有35人

查看答案和解析>>

科目: 来源: 题型:

【题目】已知斜率为1的直线与椭圆交于两点,且线段的中点为,椭圆的上顶点为.

(1)求椭圆的离心率;

(2)设直线与椭圆交于两点,若直线的斜率之和为2,证明:过定点.

查看答案和解析>>

科目: 来源: 题型:

【题目】在某区“创文明城区”(简称“创城”)活动中,教委对本区四所高中学校按各校人数分层抽样,随机抽查了100人,将调查情况进行整理后制成下表:

学校

抽查人数

50

15

10

25

“创城”活动中参与的人数

40

10

9

15

(注:参与率是指:一所学校“创城”活动中参与的人数与被抽查人数的比值)假设每名高中学生是否参与”创城”活动是相互独立的.

(1)若该区共2000名高中学生,估计学校参与“创城”活动的人数;

(2)在随机抽查的100名高中学生中,随机抽取1名学生,求恰好该生没有参与“创城”活动的概率;

(3)在上表中从两校没有参与“创城”活动的同学中随机抽取2人,求恰好两校各有1人没有参与“创城”活动的概率是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,平面,点分别在线段上,且,其中,连接,延长的延长线交于点,连接

(Ⅰ)求证:平面

(Ⅱ)若时,求二面角的正弦值;

(Ⅲ)若直线与平面所成角的正弦值为时,求值.

查看答案和解析>>

科目: 来源: 题型:

【题目】

从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:

I)求这500件产品质量指标值的样本平均值和样本方差(同一组的数据用该组区间的中点值作代表);

II)由直方图可以认为,这种产品的质量指标服从正态分布,其中近似为样本平均数近似为样本方差.

i)利用该正态分布,求

ii)某用户从该企业购买了100件这种产品,记表示这100件产品中质量指标值位于区间的产品件数.利用(i)的结果,求.

附:

查看答案和解析>>

科目: 来源: 题型:

【题目】2)(本小题满分7分)选修4-4:坐标系与参数方程

在直接坐标系中,直线l的方程为x-y+4=0,曲线C的参数方程为.

I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4),判断点P与直线l的位置关系;

II)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关”作了一次调查,其中女生人数是男生人数的,男生追星的人数占男生人数的,女生追星的人数占女生人数的.若有的把握认为是否追星和性别有关,则男生至少有( )

参考数据及公式如下:

A. 12B. 11C. 10D. 18

查看答案和解析>>

科目: 来源: 题型:

【题目】已知在点处的切线与直线平行.

(Ⅰ)求实数的值;

(Ⅱ)设

i)若函数上恒成立,求的最大值;

ii)当时,判断函数有几个零点,并给出证明.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)求的单调区间;

(2)若上成立,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知椭圆分别为其左、右焦点,过的直线与此椭圆相交于两点,且的周长为8,椭圆的离心率为

(Ⅰ)求椭圆的方程;

(Ⅱ)在平面直角坐标系中,已知点与点,过的动直线(不与轴平行)与椭圆相交于两点,点是点关于轴的对称点.求证:

i三点共线.

ii

查看答案和解析>>

同步练习册答案