相关习题
 0  263661  263669  263675  263679  263685  263687  263691  263697  263699  263705  263711  263715  263717  263721  263727  263729  263735  263739  263741  263745  263747  263751  263753  263755  263756  263757  263759  263760  263761  263763  263765  263769  263771  263775  263777  263781  263787  263789  263795  263799  263801  263805  263811  263817  263819  263825  263829  263831  263837  263841  263847  263855  266669 

科目: 来源: 题型:

【题目】是平面内共始点的三个非零向量,且两两不共线,有下列命题:

1)关于的方程可能有两个不同的实数解;

2)关于的方程至少有一个实数解;

3)关于的方程最多有一个实数解;

4)关于的方程若有实数解,则三个向量的终点不可能共线;

上述命题正确的序号是__________

查看答案和解析>>

科目: 来源: 题型:

【题目】将正分割成个全等的小正三角形(图1,图2分别给出了的情形),在每个三角形的顶点各放置一个数,使位于的三边及平行于某边的任一直线上的数(当数的个数不少于3时)都分别依次成等差数列,若顶点处的三个数互不相同且和为1,记所有顶点上的数的和为,已知,则(用含的式子表达)__________

查看答案和解析>>

科目: 来源: 题型:

【题目】椭圆C过点M(2,0),且右焦点为F(1,0),过F的直线l与椭圆C相交于AB两点.设点P(4,3),记PAPB的斜率分别为k1k2

(1)求椭圆C的方程;

(2)如果直线l的斜率等于-1,求出k1k2的值;

(3)探讨k1+k2是否为定值?如果是,求出该定值;如果不是,求出k1+k2的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在下列四个几何体中,它们的三视图(主视图、左视图、俯视图)中有且仅有两个相同,而另一个不同的几何体是(

1)棱长为1的正方体

2)底面直径和高均为1的圆柱

3)底面直径和高均为1的圆锥

4)底面边长为1、高为2的正四棱柱

A.2)(3)(4B.1)(2)(3

C.1)(3)(4D.1)(2)(4

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,三棱锥放置在以为直径的半圆面上,为圆心,为圆弧上的一点,为线段上的一点,且.

(Ⅰ)求证:平面平面

(Ⅱ)当二面角的平面角为时,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知斜三棱柱中,在底面上的射影恰为的中点,且.

1)求证:

2)求直线与平面所成角的正弦值;

3)在线段上是否存在点,使得二面角的平面角为?若存在,确定点的位置;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在数学建模课上,老师给大家带来了一则新闻:“2019816日上午,423米的东莞第一高楼民盈国贸中心2号楼(以下简称国贸中心)正式封顶,随着最后一方混凝土浇筑到位,标志着东莞最高楼纪录诞生,由东莞本地航母级企业民盈集团刷新了东莞天际线,比之前的东莞第一高楼台商大厦高出134.”在同学们的惊叹中,老师提出了问题:国贸中心真有这么高吗?我们能否运用所学知识测量验证一下?一周后,两个兴趣小组分享了他们各自的测量方案.

第一小组采用的是两次测角法:他们在国贸中心隔壁的会展中心广场上的点测得国贸中心顶部的仰角为,正对国贸中心前进了米后,到达点,在点测得国贸中心顶部的仰角为,然后计算出国贸中心的高度(如图).

第二小组采用的是镜面反射法:在国贸中心后面的新世纪豪园一幢11层楼(与国贸中心处于同一水平面,每层约3米)楼顶天台上,进行两个操作步骤:①将平面镜置于天台地面上,人后退至从镜中能看到国贸大厦的顶部位置,测量出人与镜子的距离为米;②正对国贸中心,将镜子前移米,重复①中的操作,测量出人与镜子的距离为.然后计算出国贸中心的高度(如图).

实际操作中,第一小组测得米,,最终算得国贸中心高度为;第二小组测得米,米,米,最终算得国贸中心高度为;假设他们测量者的眼高都为.

1)请你用所学知识帮两个小组完成计算(参考数据:,答案保留整数结果);

2)你认为哪个小组的方案更好,说出你的理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某工厂生产两种零件,其质量测试按指标划分,指标大于或等于的为正品,小于的为次品.现随机抽取这两种零件各100个进行检测,检测结果统计如下:

测试指标

零件

8

12

40

30

10

零件

9

16

40

28

7

(Ⅰ)试分别估计两种零件为正品的概率;

(Ⅱ)生产1个零件,若是正品则盈利50元,若是次品则亏损10元;生产1个零件,若是正品则盈利60元,若是次品则亏损15元,在(Ⅰ)的条件下:

(i)设为生产1个零件和一个零件所得的总利润,求的分布列和数学期望;

(ii)求生产5个零件所得利润不少于160元的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】设圆的圆心为,直线l过点且与x轴不重合,l交圆两点,过点的平行线交于点.

1)证明为定值,并写出点的轨迹方程;

2)设点的轨迹为曲线,直线与曲线交于两点,点为椭圆上一点,若是以为底边的等腰三角形,求面积的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)若在定义域上不单调,求的取值范围;

(2)设分别是的极大值和极小值,且,求的取值范围.

查看答案和解析>>

同步练习册答案