科目: 来源: 题型:
【题目】2019年2月25日,第届罗马尼亚数学大师赛(简称)于罗马尼亚首都布加勒斯特闭幕,最终成绩揭晓,以色列选手排名第一,而中国队无一人获得金牌,最好成绩是获得银牌的第名,总成绩排名第.而在分量极重的国际数学奥林匹克()比赛中,过去拿冠军拿到手软的中国队,也已经有连续年没有拿到冠军了.人们不禁要问“中国奥数究竟怎么了?”,一时间关于各级教育主管部门是否应该下达“禁奥令”成为社会热点.某重点高中培优班共人,现就这人“禁奥令”的态度进行问卷调查,得到如下的列联表:
不应下“禁奥令” | 应下“禁奥令” | 合计 | |
男生 | 5 | ||
女生 | 10 | ||
合计 | 50 |
若采用分层抽样的方法从人中抽出人进行重点调查,知道其中认为不应下“禁奥令”的同学共有人.
(1)请将上面的列联表补充完整,并判断是否有的把握认为对下“禁奥令”的态度与性别有关?请说明你的理由;
(2)现从这人中抽出名男生、名女生,记此人中认为不应下“禁奥令”的人数为,求的分布列和数学期望.
参考公式与数据:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示多面体,其底面为矩形且,四边形为平行四边形,点在底面内的投影恰好是的中点.
(1)已知为线段的中点,证明:平面;
(2)若二面角大小为,求直线与平面所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】下面定义一个同学数学成绩优秀的标志为:“连续次考试成绩均不低于分”.现有甲、乙、丙三位同学连续次数学考试成绩的记录数据(记录数据都是正整数):
①甲同学:个数据的中位数为,众数为;
②乙同学:个数据的中位数为,总体均值为;
③丙同学:个数据的中位数为,总体均值为,总体方差为;
则可以判定数学成绩优秀同学为()
A. 甲、丙B. 乙、丙C. 甲、乙D. 甲、乙、丙
查看答案和解析>>
科目: 来源: 题型:
【题目】在2018年10月考考试中,成都外国语学校共有250名高三文科学生参加考试,数学成绩的频率分布直方图如图:
(1)如果成绩大于130的为特别优秀,这250名学生中本次考试数学成绩特别优秀的大约多少人?
(2)如果这次考试语文特别优秀的有5人,语文和数学两科都特别优秀的共有2人,从(1)中的数学成绩特别优秀的人中随机抽取2人,求选出的2人中恰有1名两科都特别优秀的概率.
(3)根据(1),(2)的数据,是否有99%以上的把握认为语文特别优秀的同学,数学也特别优秀?
①
②
P() | 0.50 | 0.40 | … | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | … | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,四边形ABCD是直角梯形,,,,M是棱PC上一点,且,平面MBD.
(1)求实数λ的值;
(2)若平面平面ABCD,为等边三角形,且三棱锥P-MBD的体积为2,求PA的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆,为左焦点,为上顶点,为右顶点,若,抛物线的顶点在坐标原点,焦点为.
(1)求的标准方程;
(2)是否存在过点的直线,与和交点分别是和,使得?如果存在,求出直线的方程;如果不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数,其中为自然对数的底数.
(1)若函数在区间上是单调函数,试求实数的取值范围;
(2)已知函数,且,若函数在区间上恰有3个零点,求实数的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆:的离心率为,椭圆的四个顶点构成的四边形面积为.
(1)求椭圆的方程;
(2)若是椭圆上的一点,过且斜率等于的直线与椭圆交于另一点,点关于原点的对称点为.求面积的最大值及取最大值时直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com