科目: 来源: 题型:
【题目】教材曾有介绍:圆上的点处的切线方程为.我们将其结论推广:椭圆上的点处的切线方程为,在解本题时可以直接应用.已知,直线与椭圆有且只有一个公共点.
(1)求的值
(2)设为坐标原点,过椭圆上的两点分别作该椭圆的两条切线,且与交于点.当变化时,求面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】参加衡水中学数学选修课的同学,对某公司的一种产品销量与价格进行统计,得到如下数据和散点图:
定价(元/) | ||||||
年销售 | ||||||
(参考数据:
)
(I)根据散点图判断,与,与哪一对具有较强的线性相关性(给出判断即可,不必说明理由)?
(II)根据(I)的判断结果有数据,建立关于的回归方程(方程中的系数均保留两位有效数字);
(III)定价为多少元/时,年利润的预报值最大?
附:对一组数据,其回归直线的斜率和截距的最小二乘估计分别为:.
查看答案和解析>>
科目: 来源: 题型:
【题目】对于方程为的曲线给出以下三个命题:
(1)曲线关于原点对称;(2)曲线关于轴对称,也关于轴对称,且轴和轴是曲线仅有的两条对称轴;(3)若分别在第一、第二、第三、第四象限的点,都在曲线上,则四边形每一条边的边长都大于2;
其中正确的命题是( )
A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,椭圆:上的动点到一个焦点的最远距离与最近距离分别是与,的左顶点为与轴平行的直线与椭圆交于、两点,过、两点且分别与直线、垂直的直线相交于点.
(1)求椭圆的标准方程;
(2)证明点在一条定直线上运动,并求出该直线的方程;
(3)求面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线:上任意一点到其焦点的距离的最小值为1.,为抛物线上的两动点(、不重合且均异于原点),为坐标原点,直线、的倾斜角分别为,.
(1)求抛物线方程;
(2)若,求证直线过定点;
(3)若(为定值),探求直线是否过定点,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,圆的方程为.
(1)若圆上有两点,关于直线对称,且,求直线的方程;
(2)圆与轴相交于,两点,圆内的动点使,,成等比数列,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球面对接而成,该封闭几何体内部放入一个小圆柱体,且圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)写出曲线的普通方程和直线的直角坐标方程;
(2)若直线与曲线有两个不同交点,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com