相关习题
 0  263698  263706  263712  263716  263722  263724  263728  263734  263736  263742  263748  263752  263754  263758  263764  263766  263772  263776  263778  263782  263784  263788  263790  263792  263793  263794  263796  263797  263798  263800  263802  263806  263808  263812  263814  263818  263824  263826  263832  263836  263838  263842  263848  263854  263856  263862  263866  263868  263874  263878  263884  263892  266669 

科目: 来源: 题型:

【题目】早在一千多年之前,我国已经把溢流孔用于造桥技术,以减轻桥身重量和水流对桥身的冲击,现设桥拱上有如图所示的4个溢流孔,桥拱和溢流孔轮廓线均为抛物线的一部分,且四个溢流孔轮廓线相同.根据图上尺寸,在平面直角坐标系中,桥拱所在抛物线的方程为_______,溢流孔与桥拱交点的坐标为_______

查看答案和解析>>

科目: 来源: 题型:

【题目】设椭圆的右顶点为,上顶点为.已知椭圆的离心率为.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)设直线与椭圆交于两点,且点在第二象限.延长线交于点,若的面积是面积的3倍,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间和零点;

(2)若恒成立,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的短轴长为,且椭圆的一个焦点在圆上.

(1)求椭圆的方程;

(2)已知椭圆的焦距小于,过椭圆的左焦点的直线与椭圆相交于两点,若,求

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学为了组建一支业余足球队,在高一年级随机选取50名男生测量身高,发现被测男生的身高全部在之间,将测量结果按如下方式分成六组:第1,第2,第6,如图是按上述分组得到的频率分布直方图,以频率近似概率.

1)若学校要从中选1名男生担任足球队长,求被选取的男生恰好在第5组或第6组的概率;

2)试估计该校高一年级全体男生身高的平均数(同一组中的数据用该组区间的中点值代表)与中位数;

3)现在从第5与第6组男生中选取两名同学担任守门员,求选取的两人中最多有1名男生来自第5组的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】某农户计划种植莴笋和西红柿,种植面积不超过亩,投入资金不超过万元,假设种植莴笋和西红柿的产量、成本和售价如下表:

年产量/亩

年种植成本/亩

每吨售价

莴笋

5吨

1万元

0.5万元

西红柿

4.5吨

0.5万元

0.4万元

那么,该农户一年种植总利润(总利润=总销售收入-总种植成本)的最大值为____万元

查看答案和解析>>

科目: 来源: 题型:

【题目】下列判断中正确的是(

A.中,的充要条件是成等差数列

B.的充分不必要条件

C.命题,使得,则的否定:,都有

D.若平面内一动点到定点的距离等于它到定直线的距离,则该动点的轨迹是一条抛物线

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)若曲线在点处的切线与直线垂直,求函数的单调区间;

(2)若对于任意都有成立,试求的取值范围;

(3)记.时,函数在区间上有两个零点,求实数的取值范围。

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,设椭圆 ,长轴的右端点与抛物线 的焦点重合,且椭圆的离心率是

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过作直线交抛物线 两点,过且与直线垂直的直线交椭圆于另一点,求面积的最小值,以及取到最小值时直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,点满足,记点的轨迹为.斜率为的直线过点,且与轨迹相交于两点.

1)求轨迹的方程;

2)求斜率的取值范围;

3)在轴上是否存在定点,使得无论直线绕点怎样转动,总有成立?如果存在,求出定点;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案