相关习题
 0  263718  263726  263732  263736  263742  263744  263748  263754  263756  263762  263768  263772  263774  263778  263784  263786  263792  263796  263798  263802  263804  263808  263810  263812  263813  263814  263816  263817  263818  263820  263822  263826  263828  263832  263834  263838  263844  263846  263852  263856  263858  263862  263868  263874  263876  263882  263886  263888  263894  263898  263904  263912  266669 

科目: 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求曲线的极坐标方程和曲线的参数方程;

(2)若曲线与曲线在第一象限分别交于两点,且,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆与直线交于两点,不与轴垂直,圆.

(1)若点在椭圆上,点在圆上,求的最大值;

(2)若过线段的中点且垂直于的直线过点,求直线的斜率的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】新个税法于2019年1月1日进行实施.为了调查国企员工对新个税法的满意程度,研究人员在地各个国企中随机抽取了1000名员工进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中.

(1)求的值并估计被调查的员工的满意程度的中位数;(计算结果保留两位小数)

(2)若按照分层抽样从中随机抽取8人,再从这8人中随机抽取2人,求至少有1人的分数在的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱柱中,底面为正三角形,底面,点在线段上,平面平面.

(1)请指出点的位置,并给出证明;

(2)若,求点到平面的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】条形图给出的是2017年全年及2018年全年全国居民人均可支配收入的平均数与中位数,饼图给出的是2018年全年全国居民人均消费及其构成,现有如下说法:

①2018年全年全国居民人均可支配收入的平均数的增长率低于2017年;

②2018年全年全国居民人均可支配收入的中位数约是平均数的

③2018年全年全国居民衣(衣着)食(食品烟酒)住(居住)行(交通通信)的支出超过人均消费的.

则上述说法中,正确的个数是( )

A. 3B. 2C. 1D. 0

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求曲线的极坐标方程和曲线的参数方程;

(2)若曲线与曲线在第一象限分别交于两点,且,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,讨论函数的单调性;

(Ⅱ)当时,,其中,证明:.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆与直线交于两点,不与轴垂直,圆.

(1)若点在椭圆上,点在圆上,求的最大值;

(2)若过线段的中点且垂直于的直线过点,求直线的斜率的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知AB是焦距为的椭圆的上、下顶点,P是椭圆上异于顶点的任意一点,直线PAPB的斜率之积为.

1)求椭圆的方程;

2)若CD分别是椭圆的左、右顶点,动点M满足,连接CM交椭圆于点E,试问:x轴上是否存在定点T,使得恒成立?若存在,求出点T坐标,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】新个税法于2019年1月1日进行实施.为了调查国企员工对新个税法的满意程度,研究人员在地各个国企中随机抽取了1000名员工进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中.

(Ⅰ)估计被调查的员工的满意程度的中位数;(计算结果保留两位小数)

(Ⅱ)若按照分层抽样从中随机抽取8人,再从这8人中随机抽取4人,记分数在的人数为,求的分布列与数学期望;

(Ⅲ)以频率估计概率,若该研究人员从全国国企员工中随机抽取人作调查,记成绩在的人数为,若,求的最大值.

查看答案和解析>>

同步练习册答案