科目: 来源: 题型:
【题目】如图,已知直线:和直线:,射线的一个法向量为,点为坐标原点,且,直线和之间的距离为2,点,分别是直线和上的动点,,于点,于点.
(1)若,求的值;
(2)若,,且,试求的最小值;
(3)若,求的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,如果与都是整数,就称点为整点,下列命题中正确的是_____________(写出所有正确命题的编号)
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果与都是无理数,则直线不经过任何整点
③直线经过无穷多个整点,当且仅当经过两个不同的整点
④直线经过无穷多个整点的充分必要条件是:与都是有理数
⑤存在恰经过一个整点的直线
查看答案和解析>>
科目: 来源: 题型:
【题目】设椭圆 ()的左、右焦点分别为,过的直线交椭圆于,两点,若椭圆的离心率为,的周长为.
(1)求椭圆的方程;
(2)设不经过椭圆的中心而平行于弦的直线交椭圆于点,,设弦,的中点分别为,证明:三点共线.
查看答案和解析>>
科目: 来源: 题型:
【题目】2014年7月18日15时,超强台风“威马逊”登陆海南省.据统计,本次台风造成全省直接经济损失119.52亿元.适逢暑假,小明调查住在自己小区的50户居民由于台风造成的经济损失,作出如下频率分布直方图:
经济损失 4000元以下 | 经济损失 4000元以上 | 合计 | |
捐款超过500元 | 30 | ||
捐款低于500元 | 6 | ||
合计 |
(1)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如上表,在表格空白处填写正确数字,并说明是否有以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?
(2)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求连续3天内,李师傅比张师傅早到小区的天数的数学期望.
附:临界值表
参考公式: .
查看答案和解析>>
科目: 来源: 题型:
【题目】已知甲、乙、丙三位同学在某次考试中总成绩列前三名,有,,三位学生对其排名猜测如下::甲第一名,乙第二名;:丙第一名;甲第二名;:乙第一名,甲第三名.成绩公布后得知,,,三人都恰好猜对了一半,则第一名是__________.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列四个命题:
①经过定点的直线都可以用方程表示;
②经过定点的直线都可以用方程表示;
③不经过原点的直线都可以用方程表示;
④经过任意两个不同的点、的直线都可以用方程表示,
其中真命题的个数为( )
A.0B.1C.2D.3
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列、,其中,,数列{bn}满足b1=2,bn+1=2bn.
(1)求数列、的通项公式;
(2)是否存在自然数,使得对于任意,,有恒成立?若存在,求出的最小值;
(3)若数列满足,求数列的前项和.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线,过焦点F的直线l与抛物线交于S,T,且.
(1)求抛物线C的方程;
(2)设点P是x轴下方(不含x轴)一点,抛物线C上存在不同的两点A,B满足,其中为常数,且两点D,E均在C上,弦AB的中点为M.
①若点P坐标为,抛物线过点A,B的切线的交点为N,证明:点N在直线MP上;
②若直线PM交抛物线于点Q,求证;为定值(定值用表示).
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在直角梯形SABC中,,D为边SC上的点,且,现将沿AD折起到达的位置(折起后点S记为P),并使得.
(1)求证:平面ABCD;
(2)设,
①若点E在线段BP上,且满足,求平面EAC与平面PDC所成的锐二面角的余弦值
②设G是AD的中点,则在内(含边界)是否存在点F,使得平面PBC?若存在,确定点F的位置,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com