科目: 来源: 题型:
【题目】筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理(如图1).因其经济又环保,至今还在农业生产中得到使用(如图2).假定在水流量稳定的情况下,筒车上的每一个盛水筒都做匀速圆周运动.因筒车上盛水筒的运动具有周期性,可以考虑利用三角函数模型刻画盛水筒(视为质点)的运动规律.将筒车抽象为一个几何图形,建立直角坐标系(如图3).设经过t秒后,筒车上的某个盛水筒从点P0运动到点P.由筒车的工作原理可知,这个盛水筒距离水面的高度H(单位: ),由以下量所决定:筒车转轮的中心O到水面的距离h,筒车的半径r,筒车转动的角速度ω(单位: ),盛水筒的初始位置P0以及所经过的时间t(单位: ).已知r=3,h=2,筒车每分钟转动(按逆时针方向)1.5圈, 点P0距离水面的高度为3.5,若盛水筒M从点P0开始计算时间,则至少需要经过_______就可到达最高点;若将点距离水面的高度表示为时间的函数,则此函数表达式为_________.
图1 图2 图3
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆的圆心为,为圆上任意一点,,线段的垂直平分线交于点.
(1)求点的轨迹方程;
(2)记点的轨迹为曲线,点,.若点为直线上一动点,且不在轴上,直线、分别交曲线于、两点,求四边形面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆:的左、右焦点分别为、,是椭圆的上顶点,,且的面积为1.
(1)求椭圆的标准方程;
(2)设、是椭圆上的两个动点,,求当的面积取得最大值时,直线的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线与抛物线有一个公共点.
(1)求抛物线方程;
(2)斜率不为0的直线经过抛物线的焦点,交抛物线于两点,.抛物线上是否存在两点,关于直线对称?若存在,求出的斜率的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知2017年市居民平均家庭净收入走势图(家庭净收入=家庭总收入一家庭总支出),如图所示,则下列说法错误的是( )
A. 2017年2月份市居国民的平均家庭净收入最低
B. 2017年4,5,6月份市居民的平均家庭净收入比7、8、9月份的平均家庭净收入波动小
C. 2017年有3个月市居民的平均家庭净收入低于4000元
D. 2017年9、10、11、12月份平均家庭净收入持续降低
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆()的左、右焦点分别是,,点为的上顶点,点在上,,且.
(1)求的方程;
(2)已知过原点的直线与椭圆交于,两点,垂直于的直线过且与椭圆交于,两点,若,求.
查看答案和解析>>
科目: 来源: 题型:
【题目】椭圆的左、右焦点分别为、,离心率为,过焦点且垂直于x轴的直线被椭圆C截得的线段长为1.
Ⅰ求椭圆C的方程;
Ⅱ点为椭圆C上一动点,连接,,设的角平分线PM交椭圆C的长轴于点,求实数m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了适应新高考改革,某校组织了一次新高考质量测评(总分100分),在成绩统计分析中,抽取12名学生的成绩以茎叶图形式表示如图,学校规定测试成绩低于87分的为“未达标”,分数不低于87分的为“达标”.
(1)求这组数据的众数和平均数;
(2)在这12名学生中从测试成绩介于80~90之间的学生中任选2人,求至少有1人“达标”的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com