相关习题
 0  263738  263746  263752  263756  263762  263764  263768  263774  263776  263782  263788  263792  263794  263798  263804  263806  263812  263816  263818  263822  263824  263828  263830  263832  263833  263834  263836  263837  263838  263840  263842  263846  263848  263852  263854  263858  263864  263866  263872  263876  263878  263882  263888  263894  263896  263902  263906  263908  263914  263918  263924  263932  266669 

科目: 来源: 题型:

【题目】已知椭圆C上的点到右焦点F的最大距离为,离心率为

求椭圆C的方程;

如图,过点的动直线l交椭圆CMN两点,直线l的斜率为A为椭圆上的一点,直线OA的斜率为,且B是线段OA延长线上一点,且过原点O作以B为圆心,以为半径的圆B的切线,切点为,求取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】设抛物线的焦点为,过点作垂直于轴的直线与抛物线交于两点,且以线段为直径的圆过点.

(1)求抛物线的方程;

(2)若直线与抛物线交于两点,点为曲线:上的动点,求面积的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某精准扶贫帮扶单位,为帮助定点扶贫村真正脱贫,坚持扶贫同扶智相结合,帮助精准扶贫户利用互联网电商渠道销售当地特产苹果.苹果单果直径不同单价不同,为了更好的销售,现从该精准扶贫户种植的苹果树上随机摘下了50个苹果测量其直径,经统计,其单果直径分布在区间[50,95]内(单位:),统计的茎叶图如图所示:

(Ⅰ)从单果直径落在[72,80)的苹果中随机抽取3个,求这3个苹果单果直径均小于76的概率;

(Ⅱ)以此茎叶图中单果直径出现的频率代表概率.直径位于[65,90)内的苹果称为优质苹果,对于该精准扶贫户的这批苹果,某电商提出两种收购方案:

方案:所有苹果均以5元/千克收购;

方案:从这批苹果中随机抽取3个苹果,若都是优质苹果,则按6元/干克收购;若有1个非优质苹果,则按5元/千克收购;若有2个非优质苹果,则按4.5元/千克收购;若有3个非优质苹果,则按4元/千克收购.

请你通过计算为该精准扶贫户推荐收益最好的方案.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面,点为棱的中点

1)证明:

2)若为棱上一点,满足,求锐二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】椭圆经过点,左、右焦点分别是点在椭圆上,且满足点只有两个.

(Ⅰ)求椭圆的方程;

(Ⅱ)过且不垂直于坐标轴的直线交椭圆两点,在轴上是否存在一点,使得的角平分线是轴?若存在求出,若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某精准扶贫帮扶单位,为帮助定点扶贫村真正脱贫,坚持扶贫同扶智相结合,帮助精准扶贫户利用互联网电商渠道销售当地特产苹果.苹果单果直径不同单价不同,为了更好的销售,现从该精准扶贫户种植的苹果树上随机摘下了50个苹果测量其直径,经统计,其单果直径分布在区间[50,95]内(单位:),统计的茎叶图如图所示:

(Ⅰ)按分层抽样的方法从单果直径落在[80,85),[85,90)的苹果中随机抽取6个,再从这6个苹果中随机抽取2个,求这两个苹果单果直径均在[85,90)内的概率;

(Ⅱ)以此茎叶图中单果直径出现的频率代表概率.已知该精准扶贫户有20000个约5000千克苹果待出售,某电商提出两种收购方案:

方案:所有苹果均以5.5元/千克收购;

方案:按苹果单果直径大小分3类装箱收购,每箱装25个苹果,定价收购方式为:单果直径 在[50,65)内按35元/箱收购,在[65,90)内按50元/箱收购,在[90,95]内按35元/箱收购.包装箱与分拣装箱工费为5元/箱.请你通过计算为该精准扶贫户推荐收益最好的方案.

查看答案和解析>>

科目: 来源: 题型:

【题目】AB分别是双曲线的左右顶点,设过的直线PAPB与双曲线分别交于点MN,直线MNx轴于点Q,过Q的直线交双曲线的于ST两点,且,则的面积( )

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的左顶点为,两个焦点与短轴一个顶点构成等腰直角三角形,过点且与x轴不重合的直线l与椭圆交于M,N不同的两点.

(Ⅰ)求椭圆P的方程;

(Ⅱ)当AM与MN垂直时,求AM的长;

(Ⅲ)若过点P且平行于AM的直线交直线于点Q,求证:直线NQ恒过定点.

查看答案和解析>>

科目: 来源: 题型:

【题目】据《人民网》报道,“美国国家航空航天局(NASA)发文称,相比20年前世界变得更绿色了,卫星资料显示中国和印度的行动主导了地球变绿.”据统计,中国新增绿化面积的420/0来自于植树造林,下表是中国十个地区在2017年植树造林的相关数据.(造林总面积为人工造林、飞播造林、新封山育林、退化林修复、人工更新的面积之和)单位:公顷

按造林方式分

地区

造林总面积

人工造林

飞播造林

新封山育林

退化林修复

人工更新

内蒙

618484

311052

74094

136006

90382

6950

河北

583361

345625

33333

135107

65653

3643

河南

149002

97647

13429

22417

15376

133

重庆

226333

100600

62400

63333

陕西

297642

184108

33602

63865

16067

甘肃

325580

260144

57438

7998

新疆

263903

118105

6264

126647

10796

2091

青海

178414

16051

159734

2629

宁夏

91531

58960

22938

8298

1335

北京

19064

10012

4000

3999

1053

(Ⅰ)请根据上述数据,分别写出在这十个地区中人工造林面积与造林总面积的比值最大和最小的地区;

(Ⅱ)在这十个地区中,任选一个地区,求该地区人工造林面积与造林总面积的比值不足50%的概率是多少?

(Ⅲ)从上表新封山育林面积超过十万公顷的地区中,任选两个地区,求至少有一个地区退化林修复面积超过五万公顷的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】经观测,某公路段在某时段内的车流量(千辆/小时)与汽车的平均速度(千米/小时)之间有函数关系:

1)在该时段内,当汽车的平均速度为多少时车流量最大?最大车流量为多少?(精确到0.01)

2)为保证在该时段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?

查看答案和解析>>

同步练习册答案