科目: 来源: 题型:
【题目】自贡农科所实地考察,研究发现某贫困村适合种植,两种药材,可以通过种植这两种药材脱贫.通过大量考察研究得到如下统计数据:药材的亩产量约为300公斤,其收购价格处于上涨趋势,最近五年的价格如下表:
编号 | 1 | 2 | 3 | 4 | 5 |
年份 | 2015 | 2016 | 2017 | 2018 | 2019 |
单价(元/公斤) | 18 | 20 | 23 | 25 | 29 |
药材的收购价格始终为20元/公斤,其亩产量的频率分布直方图如下:
(1)若药材的单价(单位:元/公斤)与年份编号具有线性相关关系,请求出关于的回归直线方程,并估计2020年药材的单价;
(2)用上述频率分布直方图估计药材的平均亩产量,若不考虑其他因素,试判断2020年该村应种植药材还是药材?并说明理由.
参考公式:,(回归方程中)
查看答案和解析>>
科目: 来源: 题型:
【题目】把一个均匀的正方体骰子抛掷两次,观察出现的点数,记第一次出现的点数为,第二次出现的点数为,设直线:,直线:.
(1)求直线和直线没有交点的概率;
(2)求直线和直线的交点在第一象限的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥中,底面是边长为2的菱形,,,平面平面,点为棱的中点.
(Ⅰ)在棱上是否存在一点,使得平面,并说明理由;
(Ⅱ)当二面角的余弦值为时,求直线与平面所成的角.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点,在圆:上任取一点,的垂直平分线交于点.(如图).
(1)求点的轨迹方程;
(2)若过点的动直线与(1)中的轨迹相交于、两点.问:平面内是否存在异于点的定点,使得恒成立?试证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】某城市交通部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照分成5组,制成如图所示频率分直方图.
(1)求图中x的值;
(2)求这组数据的平均数和中位数;
(3)已知满意度评分值在内的男生数与女生数3:2,若在满意度评分值为的人中随机抽取2人进行座谈,求2人均为男生的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点,在圆:上任取一点,的垂直平分线交于点.(如图).
(1)求点的轨迹方程;
(2)若过点的动直线与(1)中的轨迹相交于、两点.问:平面内是否存在异于点的定点,使得恒成立?试证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】椭圆经过点,左、右焦点分别是,,点在椭圆上,且满足的点只有两个.
(Ⅰ)求椭圆的方程;
(Ⅱ)过且不垂直于坐标轴的直线交椭圆于,两点,在轴上是否存在一点,使得的角平分线是轴?若存在求出,若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某城市交通部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照分成5组,制成如图所示频率分直方图.
(1)求图中x的值;
(2)求这组数据的平均数和中位数;
(3)已知满意度评分值在内的男生数与女生数3:2,若在满意度评分值为的人中随机抽取2人进行座谈,求2人均为男生的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】等腰直角三角形中,,点在边上,垂直交于,如图①.将沿折起,使到达的位置,且使平面平面,连接,,如图②.
(Ⅰ)若为的中点,,求证:;
(Ⅱ)若,当三棱锥的体积最大时,求二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com