科目: 来源: 题型:
【题目】司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命. 为了研究司机开车时使用手机的情况,交警部门调查了名机动车司机,得到以下统计:在名男性司机中,开车时使用手机的有人,开车时不使用手机的有人;在名女性司机中,开车时使用手机的有人,开车时不使用手机的有人.
(1)完成下面的列联表,并判断是否有的把握认为开车时使用手机与司机的性别有关;
开车时使用手机 | 开车时不使用手机 | 合计 | |
男性司机人数 | |||
女性司机人数 | |||
合计 |
(2)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为,若每次抽检的结果都相互独立,求的分布列和数学期望.
参考公式与数据:
参考数据:
参考公式
span>,其中.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为.
(1)求的直角坐标方程和的直角坐标;
(2)设与交于,两点,线段的中点为,求.
查看答案和解析>>
科目: 来源: 题型:
【题目】设抛物线:的焦点为,直线与交于,两点,的面积为.
(1)求的方程;
(2)若,是上的两个动点,,试问:是否存在定点,使得?若存在,求的坐标,若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】“工资条里显红利,个税新政入民心”.随着2019年新年钟声的敲响,我国自1980年以来,力度最大的一次个人所得税(简称个税)改革迎来了全面实施的阶段.某从业者为了解自己在个税新政下能享受多少税收红利,绘制了他在26岁-35岁(2009年-2018年)之间各年的月平均收入(单位:千元)的散点图:(注:年龄代码1-10分别对应年龄26-35岁)
(1)由散点图知,可用回归模型拟合与的关系,试根据有关数据建立关于的回归方程;
(2)如果该从业者在个税新政下的专项附加扣除为3000元/月,试利用(1)的结果,将月平均收入视为月收入,根据新旧个税政策,估计他36岁时每个月少缴纳的个人所得税.
附注:①参考数据:,,,,
,,,其中:取,.
②参考公式:回归方程中斜率和截距的最小二乘估计分别为,.
③新旧个税政策下每月应纳税所得额(含税)计算方法及税率表如下:
旧个税税率表(个税起征点3500元) | 新个税税率表(个税起征点5000元) | |||
缴税 级数 | 每月应纳税所得额(含税)收入个税起征点 | 税率 | 每月应纳税所得额(含税)收入个税起征点专项附加扣除 | 税率 |
1 | 不超过1500元的都分 | 3 | 不超过3000元的都分 | 3 |
2 | 超过1500元至4500元的部分 | 10 | 超过3000元至12000元的部分 | 10 |
3 | 超过4500元至9000元的部分 | 20 | 超过12000元至25000元的部分 | 20 |
4 | 超过9000元至35000元的部分 | 25 | 超过25000元至35000元的部分 | 25 |
5 | 超过35000元至55000元的部分 | 30 | 超过35000元至55000元的部分 | 30 |
查看答案和解析>>
科目: 来源: 题型:
【题目】椭圆的中心在坐标原点,焦点在轴上,过坐标原点的直线交于两点,,面积的最大值为
(1)求椭圆的方程;
(2)是椭圆上与不重合的一点,证明:直线的斜率之积为定值;
(3)当点在第一象限时,轴,垂足为,连接并延长交于点,求的面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】设O为坐标原点,动点M在椭圆C上,过M作x轴的垂线,垂足为N,点P满足.
(1)求点P的轨迹方程;
(2)设点在直线上,且.证明:过点P且垂直于OQ的直线过C的左焦点F.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com