科目: 来源: 题型:
【题目】关于曲线,有如下结论:
①曲线C关于原点对称;
②曲线C关于直线x±y=0对称;
③曲线C是封闭图形,且封闭图形的面积大于2π;
④曲线C不是封闭图形,且它与圆x2+y2=2无公共点;
⑤曲线C与曲线有4个交点,这4点构成正方形.其中所有正确结论的序号为__.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C:+=1(a>b>0)的两个焦点分别为F1,F2,短轴的一个端点为P,△PF1F2内切圆的半径为,设过点F2的直线l与被椭圆C截得的线段为RS,当l⊥x轴时,|RS|=3.
(1) 求椭圆C的标准方程;
(2) 若点M(0,m),(),过点M的任一直线与椭圆C相交于两点A.B,y轴上是否存在点N(0,n)使∠ANM=∠BNM恒成立?若存在,判断m、n应满足关系;若不存在,说明理由。
(3) 在(2)条件下m=1时,求△ABN面积的最大值。
查看答案和解析>>
科目: 来源: 题型:
【题目】如图①,在直角梯形ABCD中,AD=1,AD∥BC,AB⊥BC,BD⊥DC,点E是BC边的中点,将△ABD沿BD折起,使平面ABD⊥平面BCD,连接AE,AC,DE,得到如图②所示的几何体.
(1)求证:AB⊥平面ADC;
(2)若AC与平面ABD所成角的正切值为,求二面角B—AD—E的余弦值。
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的离心率为,椭圆的左焦点为,椭圆上任意点到的最远距离是,过直线与轴的交点任作一条斜率不为零的直线与椭圆交于不同的两点、,点关于轴的对称点为.
(1)求椭圆的方程;
(2)求证:、、三点共线;
(3)求面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知过抛物线x2=2py(p>0)的焦点,斜率为的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9.
(1)求该抛物线的方程;
(2)O为坐标原点,C为抛物线上一点,若,求λ的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在多面体中,四边形是正方形,平面平面,.
(1)求证:平面;
(2)在线段上是否存在点,使得平面与平面所成的锐二面角的大小为,若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆C经过点A(2,-1),和直线x+y=1相切,且圆心在直线y=-2x上.
(1)求圆C的方程;
(2)已知直线l经过(2,0)点,并且被圆C截得的弦长为2,求直线l的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列结论中错误的是( )
A.“﹣2<m<3”是方程表示椭圆”的必要不充分条件
B.命题p:,使得的否定
C.命题“若,则方程有实根”的逆否命题是真命题
D.命题“若,则且”的否命题是“若,则或”
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com