科目: 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为,以原点0为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)若曲线方程中的参数是,且与有且只有一个公共点,求的普通方程;
(2)已知点,若曲线方程中的参数是,,且与相交于,两个不同点,求的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】设常数,已知复数,和,其中均为实数,为虚数单位,且对于任意复数,有,将作为点的坐标,作为点的坐标,通过关系式,可以看作是坐标平面上点的一个变换,它将平面上的点变到这个平面上的点.
(1)分别写出和用表示的关系式;
(2)设,当点在圆上移动时,求证:点经该变换后得到的点落在一个圆上,并求出该圆的方程;
(3)求证:对于任意的常数,总存在曲线,使得当点在上移动时,点经这个变换后得到的点的轨迹是二次函数的图像,并写出对于正常数,满足条件的曲线的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】在正方体中,如果动点在线段上,动点在正方体的四条边上,那么,对于任何一条直线,在平面上,总存在相应的一条直线,使得该直线与直线( )
A.平行B.异面C.相交D.垂直
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,椭圆的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求椭圆的极坐标方程和直线的直角坐标方程;
(2)若点的极坐标为,直线与椭圆相交于,两点,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知定圆,过定点的直线交圆于两点.
(1)若,求直线的斜率;
(2)求面积的取值范围;
(3)若圆内一点的坐标是,且过点的直线交圆于两点,,求实数的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,平面中两条直线和相交于点O,对于平面上任意一点M,若x,y分别是M到直线和的距离,则称有序非负实数对(x,y)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列三个命题:
①若p=q=0,则“距离坐标”为(0,0)的点有且只有1个;
②若pq=0,且p+q≠0,则“距离坐标”为(p,q)的点有且只有2个;
③若pq≠0则“距离坐标”为(p,q)的点有且只有4个.
上述命题中,正确命题的是______.(写出所有正确命题的序号)
查看答案和解析>>
科目: 来源: 题型:
【题目】某人有楼房一幢,室内总面积为,拟分割成两类房间作为旅游客房,有关的数据如下表:
大房间 | 小房间 | |
每间的面积 | ||
每间装修费 | 元 | 6000元 |
每天每间住人数 | 5人 | 3人 |
每天每人住宿费 | 80元 | 100元 |
如果他只能筹款80000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,能获得的住宿总收入最多?每天获得的住宿总收入最多是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com