相关习题
 0  263756  263764  263770  263774  263780  263782  263786  263792  263794  263800  263806  263810  263812  263816  263822  263824  263830  263834  263836  263840  263842  263846  263848  263850  263851  263852  263854  263855  263856  263858  263860  263864  263866  263870  263872  263876  263882  263884  263890  263894  263896  263900  263906  263912  263914  263920  263924  263926  263932  263936  263942  263950  266669 

科目: 来源: 题型:

【题目】在直角坐标系中,圆的参数方程为为参数),以直角坐标系的原点为极点,轴正半轴为极轴建立极坐标系.

(1)求圆的极坐标方程;

(2)设曲线的极坐标方程为,曲线的极坐标方程为,求三条曲线所围成图形的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)若,求实数的取值范围;

(2)设函数的极大值为,极小值为,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校学生会为了解高二年级600名学生课余时间参加中华传统文化活动的情况(每名学生最多参加7场).随机抽取50名学生进行调查,将数据分组整理后,列表如下:

参加场数

0

1

2

3

4

5

6

7

占调查人数的百分比

8%

10%

20%

26%

18%

m%

4%

2%

则以下四个结论中正确的是( )

A.表中m的数值为10

B.估计该年级参加中华传统文化活动场数不高于2场的学生约为108人

C.估计该年级参加中华传统文化活动场数不低于4场的学生约为216人

D.若采用系统抽样方法进行调查,从该校高二600名学生中抽取容量为30的样本,则分段间隔为15

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率为,椭圆经过点.

(1)求椭圆的标准方程;

(2)设点是椭圆上的任意一点,射线与椭圆交于点,过点的直线与椭圆有且只有一个公共点,直线与椭圆交于两个相异点,证明:面积为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某省确定从2021年开始,高考采用“”的模式,取消文理分科,即“3”包括语文、数学、英语,为必考科目:“1”表示从物理、历史中任选一门;“2”则是从生物、化学、地理、政治中选择两门,共计六门考试科目.某高中从高一年级2000名学生(其中女生900人)中,采用分层抽样的方法抽取名学生进行调查.

(1)已知抽取的名学生中含男生110人,求的值及抽取到的女生人数;

(2)学校计划在高二上学期开设选修中的“物理”和“历史”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生讲行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目).下表是根据调查结果得到的列联表,请将列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;

性别

选择物理

选择历史

总计

男生

50

女生

30

总计

(3)在(2)的条件下,从抽取的选择“物理”的学生中按分层抽样抽取6人,再从这6名学生中抽取2人,对“物理”的选课意向作深入了解,求2人中至少有1名女生的概率.

参考公式:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(Ⅰ)若,解不等式

(Ⅱ)当时,函数的最小值为,求实数的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形,侧面底面为棱的中点,为棱上任意一点,且不与点、点重合.

1)求证:平面平面

2)是否存在点使得平面与平面所成的角的余弦值为?若存在,求出点的位置;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率,且过焦点的最短弦长为3.

1)求椭圆的标准方程;

2)设分别是椭圆的左、右焦点,过点的直线与曲线交于不同的两点,求的内切圆半径的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率为,过右焦点作直线交椭圆两点,的周长为,点.

1)求椭圆的方程;

2)设直线的斜率,请问是否为定值?若是定值,求出其定值;若不是,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线恒过定点,过点引圆的两条切线,设切点分别为.

1)求直线的一般式方程;

2)求四边形的外接圆的标准方程.

查看答案和解析>>

同步练习册答案