相关习题
 0  263781  263789  263795  263799  263805  263807  263811  263817  263819  263825  263831  263835  263837  263841  263847  263849  263855  263859  263861  263865  263867  263871  263873  263875  263876  263877  263879  263880  263881  263883  263885  263889  263891  263895  263897  263901  263907  263909  263915  263919  263921  263925  263931  263937  263939  263945  263949  263951  263957  263961  263967  263975  266669 

科目: 来源: 题型:

【题目】已知函数.

1)若,求曲线在点处的切线方程.

2)当时,求函数的单调区间.

3)设函数若对于任意,都有成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知动点到定点和到直线的距离之比为,设动点的轨迹为曲线,过点作垂直于轴的直线与曲线相交于两点,直线与曲线交于两点,与相交于一点(交点位于线段上,且与不重合).

(1)求曲线的方程;

(2)当直线与圆相切时,四边形的面积是否有最大值?若有,求出其最大值及对应的直线的方程;若没有,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】为评估设备生产某种零件的性能,从该设备生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:

直径/

78

79

81

82

83

84

85

86

87

88

89

90

91

93

合计

件数

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

经计算,样本的平均值,标准差,以频率值作为概率的估计值.

(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行评判(表示相应事件的频率):

;②;③,评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁.试判断设备的性能等级.

(2)将直径小于等于的零件或直径大于等于的零件认定为是“次品”,将直径小于等于的零件或直径大于等于的零件认定为是“突变品”,从样本的“次品”中随意抽取2件零件,求“突变品”个数的数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】为发展业务,某调研组对两个公司的产品需求量进行调研,准备从国内个人口超过万的超大城市和)个人口低于万的小城市随机抽取若干个进行统计,若一次抽取个城市,全是小城市的概率为.

(1)求的值;

(2)若一次抽取个城市,则:①假设取出小城市的个数为,求的分布列和期望;

②若取出的个城市是同一类城市,求全为超大城市的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥为等边三角形,平面平面中点.

(1)求证:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】《易经》是中国传统文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每卦有三根线组成(“”表示一根阳线,“”表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有三根阳线和三根阴线的概率__________

查看答案和解析>>

科目: 来源: 题型:

【题目】英语老师要求学生从星期一到星期四每天学习3个英语单词:每周五对一周内所学单词随机抽取若干个进行检测(一周所学的单词每个被抽到的可能性相同)

(1)英语老师随机抽了个单词进行检测,求至少有个是后两天学习过的单词的概率;

(2)某学生对后两天所学过的单词每个能默写对的概率为,对前两天所学过的单词每个能默写对的概率为,若老师从后三天所学单词中各抽取一个进行检测,求该学生能默写对的单词的个数的分布列和期望。

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的对称轴为坐标轴,焦点在轴上,离心率为,且经过点.

(1)求椭圆的方程;

(2)设直线与椭圆相交于两点,且,若原点在以为直径的圆外,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】函数的所有零点的积为m,则有(  )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一名学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.

某学校为了了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:

性别

选考方案确定情况

物理

化学

生物

历史

地理

政治

男生

选考方案确定的有6人

6

6

3

1

2

0

选考方案待确定的有8人

5

4

0

1

2

1

女生

选考方案确定的有10人

8

9

6

3

3

1

选考方案待确定的有6人

5

4

0

0

1

1

(Ⅰ)试估计该学校高一年级确定选考生物的学生有多少人?

(Ⅱ)写出选考方案确定的男生中选择“物理、化学和地理”的人数.(直接写出结果)

(Ⅲ)从选考方案确定的男生中任选2名,试求出这2名学生选考科目完全相同的概率.

查看答案和解析>>

同步练习册答案