相关习题
 0  263789  263797  263803  263807  263813  263815  263819  263825  263827  263833  263839  263843  263845  263849  263855  263857  263863  263867  263869  263873  263875  263879  263881  263883  263884  263885  263887  263888  263889  263891  263893  263897  263899  263903  263905  263909  263915  263917  263923  263927  263929  263933  263939  263945  263947  263953  263957  263959  263965  263969  263975  263983  266669 

科目: 来源: 题型:

【题目】在直角坐标系中,圆的参数方程为为参数),以直角坐标系的原点为极点,轴正半轴为极轴建立极坐标系.

(1)求圆的极坐标方程;

(2)设曲线的极坐标方程为,曲线的极坐标方程为,求三条曲线所围成图形的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数

(1)若,求函数的极值;

(2)若是函数的一个极值点,试求出关于的关系式(即用表示),并确定的单调区间;(提示:应注意对的取值范围进行讨论)

(3)在(2)的条件下,设,函数,若存在使得成立,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)当时,判断函数的单调性;

2)若恒成立,求的取值范围;

3)已知,证明.

查看答案和解析>>

科目: 来源: 题型:

【题目】设椭圆,定义椭圆的“相关圆”方程为.若抛物线的焦点与椭圆的一个焦点重合,且椭圆短轴的一个端点和其两个焦点构成直角三角形.

(1)求椭圆的方程和“相关圆”的方程;

(2)过“相关圆”上任意一点的直线与椭圆交于两点.为坐标原点,若,证明原点到直线的距离是定值,并求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】“水是生命之源”,但是据科学界统计可用淡水资源仅占地球储水总量的,全世界近人口受到水荒的威胁.某市为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨):一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.

(1)求直方图中的值;

(2)设该市有60万居民,估计全市居民中月均用水量不低于2.5吨的人数,并说明理由;

(3)若该市政府希望使的居民每月的用水不按议价收费,估计的值,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】2018年9月24日,阿贝尔奖和菲尔兹奖双料得主、英国著名数学家阿蒂亚爵士宣布自己证明了黎曼猜想,这一事件引起了数学界的震动.在1859年,德国数学家黎曼向科学院提交了题目为《论小于某值的素数个数》的论文并提出了一个命题,也就是著名的黎曼猜想.在此之前,著名数学家欧拉也曾研究过这个问题,并得到小于数字的素数个数大约可以表示为的结论.若根据欧拉得出的结论,估计10000以内的素数的个数为(素数即质数,,计算结果取整数)

A. 1089 B. 1086 C. 434 D. 145

查看答案和解析>>

科目: 来源: 题型:

【题目】在数列{an}中,已知,且2an+1=an+1nN*).

1)求证:数列{an-1}是等比数列;

2)若bn=nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,其中,,且的最小值为,的图像的相邻两条对称轴之间的距离为.

1)求函数的解析式和单调递增区间;

2)在中,角,,所对的边分别为,,.,求.

查看答案和解析>>

科目: 来源: 题型:

【题目】(多选)已知函数,其中正确结论的是( )

A.时,函数有最大值.

B.对于任意的,函数一定存在最小值.

C.对于任意的,函数上的增函数.

D.对于任意的,都有函数.

查看答案和解析>>

科目: 来源: 题型:

【题目】若无穷数列满足:对任意两个正整数,至少有一个成立,则称这个数列为“和谐数列”.

(Ⅰ)求证:若数列为等差数列,则为“和谐数列”;

(Ⅱ)求证:若数列为“和谐数列”,则数列从第项起为等差数列;

(Ⅲ)若是各项均为整数的“和谐数列”,满足,且存在使得,求p的所有可能值.

查看答案和解析>>

同步练习册答案