相关习题
 0  263811  263819  263825  263829  263835  263837  263841  263847  263849  263855  263861  263865  263867  263871  263877  263879  263885  263889  263891  263895  263897  263901  263903  263905  263906  263907  263909  263910  263911  263913  263915  263919  263921  263925  263927  263931  263937  263939  263945  263949  263951  263955  263961  263967  263969  263975  263979  263981  263987  263991  263997  264005  266669 

科目: 来源: 题型:

【题目】ABC的内角ABC的对边分别是abc,已知

1)求角A

2)若,△ABC的面积为,求△ABC的周长.

查看答案和解析>>

科目: 来源: 题型:

【题目】“垛积术”(隙积术)是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有菱草垛、方垛、刍童垛、三角垛等等,某仓库中部分货物堆放成如图所示的“菱草垛”:自上而下,第一层1件,以后每一层比上一层多1件,最后一层是n件,已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的.若这堆货物总价是万元,则n的值为( )

A. 7B. 8C. 9D. 10

查看答案和解析>>

科目: 来源: 题型:

【题目】某部队在一次军演中要先后执行六项不同的任务,要求是:任务A必须排在前三项执行,且执行任务A之后需立即执行任务E,任务B、任务C不能相邻,则不同的执行方案共有( )

A. 36种B. 44种C. 48种D. 54种

查看答案和解析>>

科目: 来源: 题型:

【题目】对在直角坐标系的第一象限内的任意两点作如下定义:,那么称点是点的“上位点”,同时点是点的“下位点”.

1)试写出点的一个“上位点”坐标和一个“下位点”坐标;

2)设均为正数,且点是点的上位点,请判断点是否既是点的“下位点”又是点的“上位点”,如果是请证明,如果不是请说明理由;

3)设正整数满足以下条件:对任意实数,总存在,使得点既是点的“下位点”,又是点的“上位点”,求正整数的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】上饶市在某次高三适应性考试中对数学成绩数据统计显示,全市10000名学生的成绩近似服从正态分布,现某校随机抽取了50名学生的数学成绩分析,结果这50名学生的成绩全部介于85分到145分之间,现将结果按如下方式分为6组,第一组,第二组,第六组,得到如图所示的频率分布直方图:

1)试由样本频率分布直方图估计该校数学成绩的平均分数;

2)若从这50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为,求的概率.

附:若,则.

查看答案和解析>>

科目: 来源: 题型:

【题目】下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:

空调类

冰箱类

小家电类

其它类

营业收入占比

净利润占比

则下列判断中不正确的是( )

A. 该公司2018年度冰箱类电器营销亏损

B. 该公司2018年度小家电类电器营业收入和净利润相同

C. 该公司2018年度净利润主要由空调类电器销售提供

D. 剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低

查看答案和解析>>

科目: 来源: 题型:

【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1

年份x

2011

2012

2013

2014

2015

储蓄存款y(千亿元)

5

6

7

8

10

为了研究计算的方便,工作人员将上表的数据进行了处理, 得到下表2

时间代号t

1

2

3

4

5

z

0

1

2

3

5

(Ⅰ)求z关于t的线性回归方程;

(Ⅱ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?

(附:对于线性回归方程,其中

查看答案和解析>>

科目: 来源: 题型:

【题目】司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命. 为了研究司机开车时使用手机的情况,交警部门调查了名机动车司机,得到以下统计:在名男性司机中,开车时使用手机的有人,开车时不使用手机的有人;在名女性司机中,开车时使用手机的有人,开车时不使用手机的有人.

(1)完成下面的列联表,并判断是否有的把握认为开车时使用手机与司机的性别有关;

开车时使用手机

开车时不使用手机

合计

男性司机人数

女性司机人数

合计

(2)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为,若每次抽检的结果都相互独立,求的分布列和数学期望

参考公式与数据:

参考数据:

参考公式

,其中.

查看答案和解析>>

科目: 来源: 题型:

【题目】某教研部门对本地区甲、乙、丙三所学校高三年级进行教学质量抽样调查,甲、乙、丙三所学校高三年级班级数量(单位:个)如下表所示。研究人员用分层抽样的方法从这三所学校中共抽取6个班级进行调查.

学校

数量

4

12

8

(1)求这6个班级中来自甲、乙、丙三所学校的数量;

(2)若在这6个班级中随机抽取2个班级做进一步调查,

①列举出所有可能的抽取结果;

②求这2个班级来自同一个学校的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】某大学毕业生参加一个公司的招聘考试,考试分笔试和面试两个环节,笔试有两个题目,该学生答对两题的概率分别为,两题全部答对方可进入面试.面试要回答甲、乙两个问题,该学生答对这两个问题的概率均为,至少答对一个问题即可被聘用,若只答对一问聘为职员,答对两问聘为助理(假设每个环节的每个题目或问题回答正确与否是相互独立的).

1)求该学生被公司聘用的概率;

2)设该学生应聘结束后答对的题目或问题的总个数为,求的分布列和数学期望.

查看答案和解析>>

同步练习册答案