科目: 来源: 题型:
【题目】设抛物线的对称轴是轴,顶点为坐标原点,点在抛物线上,
(1)求抛物线的标准方程;
(2)直线与抛物线交于、两点(和都不与重合),且,求证:直线过定点并求出该定点坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市为了解社区群众体育活动的开展情况,拟采用分层抽样的方法从A,B,C三个行政区抽出6个社区进行调查.已知A,B,C行政区中分别有12,18,6个社区.
(1)求从A,B,C三个行政区中分别抽取的社区个数;
(2)若从抽得的6个社区中随机的抽取2个进行调查结果的对比,求抽取的2个社区中至少有一个来自A行政区的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程为(为参数),圆的方程为.以原点为极点,轴正半轴为极轴建立极坐标系.
(Ⅰ)求直线及圆的极坐标方程;
(Ⅱ)若直线与圆交于两点,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】设点、的坐标分别为和,动点P满足,设动点P的轨迹为,以动点P到点距离的最大值为长轴,以点、为左、右焦点的椭圆为,则曲线和曲线的交点到轴的距离为_________.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知、分别是椭圆的左、右焦点,点在椭圆上,且的面积为.
(1)求椭圆的方程;
(2)设直线与椭圆交于、两点,为坐标原点,轴上是否存在点,使得,若存在,求出点的坐标;若不存在,请说明理由;
(3)设为椭圆上非长轴顶点的任意一点,为线段上一点,若与的内切圆面积相等,求证:线段的长度为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆的圆心为,点是圆上的动点,点,线段的垂直平分线交于点.
(1)求点的轨迹的方程;
(2)过点作斜率不为0的直线与(1)中的轨迹交于,两点,点关于轴的对称点为,连接交轴于点,求.
查看答案和解析>>
科目: 来源: 题型:
【题目】某学校为了了解高中生的艺术素养,从学校随机选取男,女同学各50人进行研究,对这100名学生在音乐、美术、戏剧、舞蹈等多个艺术项目进行多方位的素质测评,并把调查结果转化为个人的素养指标和,制成下图,其中“*”表示男同学,“+”表示女同学.
若,则认定该同学为“初级水平”,若,则认定该同学为“中级水平”,若,则认定该同学为“高级水平”;若,则认定该同学为“具备一定艺术发展潜质”,否则为“不具备明显艺术发展潜质”.
(I)从50名女同学的中随机选出一名,求该同学为“初级水平”的概率;
(Ⅱ)从男同学所有“不具备明显艺术发展潜质的中级或高级水平”中任选2名,求选出的2名均为“高级水平”的概率;
(Ⅲ)试比较这100名同学中,男、女生指标的方差的大小(只需写出结论).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com