相关习题
 0  263837  263845  263851  263855  263861  263863  263867  263873  263875  263881  263887  263891  263893  263897  263903  263905  263911  263915  263917  263921  263923  263927  263929  263931  263932  263933  263935  263936  263937  263939  263941  263945  263947  263951  263953  263957  263963  263965  263971  263975  263977  263981  263987  263993  263995  264001  264005  264007  264013  264017  264023  264031  266669 

科目: 来源: 题型:

【题目】某新上市的电子产品举行为期一个星期(7天)的促销活动,规定购买该电子产品可免费赠送礼品一份,随着促销活动的有效开展,第五天工作人员对前五天中参加活动的人数进行统计,表示第天参加该活动的人数,得到统计表格如下:

1

2

3

4

5

4

6

10

23

22

1)若具有线性相关关系,请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

2)预测该星期最后一天参加该活动的人数(按四舍五入取到整数).

参考公式:

查看答案和解析>>

科目: 来源: 题型:

【题目】在某次测验中,某班40名考生的成绩满分100分统计如图所示.

(Ⅰ)估计这40名学生的测验成绩的中位数精确到0.1;

(Ⅱ)记80分以上为优秀,80分及以下为合格,结合频率分布直方图完成下表,并判断是否有95%的把握认为数学测验成绩与性别有关?

合格

优秀

合计

男生

16

女生

4

合计

40

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】已知曲线上动点与定点的距离和它到定直线的距离的比是常数.若过的动直线与曲线相交于两点.

(1)判断曲线的名称并写出它的标准方程;

(2)是否存在与点不同的定点,使得恒成立?若存在,求出点的坐标;若不存在,请说明理由。

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),其中.以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的极坐标方程为.

1)求的直角坐标方程;

2)已知点交于点,与交于两点,且,求的普通方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

1)若,求实数的值.

2)若,求正实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的左、右焦点分别为).点上,的周长为,面积为

1)求的方程;

2)过的直线交于两点,以为直径的圆与直线相切,求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】今年入冬以来,我市天气反复.在下图中统计了我市上个月前15天的气温,以及相对去年同期的气温差(今年气温-去年气温,单位:摄氏度),以下判断错误的是(

A.今年每天气温都比去年气温低B.今年的气温的平均值比去年低

C.今年8-12号气温持续上升D.今年8号气温最低

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)若a=1,求f(x)的极值;

(2)若存在x0[1,e],使得f(x0)<g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知过抛物线的焦点,斜率为的直线交抛物线于两点,且.

(1)求该抛物线的方程;

(2) 为坐标原点,为抛物线上一点,若,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】2018年,依托用户碎片化时间的娱乐需求、分享需求以及视频态的信息负载力,短视频快速崛起;与此同时,移动阅读方兴未艾,从侧面反应了人们对精神富足的一种追求,在习惯了大众娱乐所带来的短暂愉悦后,部分用户依旧对有着传统文学底蕴的严肃阅读青睐有加.

某读书APP抽样调查了非一线城市M和一线城市N100名用户的日使用时长(单位:分钟),绘制成频率分布直方图如下,其中日使用时长不低于60分钟的用户记为活跃用户

1)请填写以下列联表,并判断是否有995%的把握认为用户活跃与否与所在城市有关?

活跃用户

不活跃用户

合计

城市M

城市N

合计

2)以频率估计概率,从城市M中任选2名用户,从城市N中任选1名用户,设这3名用户中活跃用户的人数为,求的分布列和数学期望.

3)该读书APP还统计了20184个季度的用户使用时长y(单位:百万小时),发现y与季度()线性相关,得到回归直线为,已知这4个季度的用户平均使用时长为12.3百万小时,试以此回归方程估计2019年第一季度()该读书APP用户使用时长约为多少百万小时.

附:,其中

0.025

0.010

0.005

0.001

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案