科目: 来源: 题型:
【题目】如图,在多面体中,四边形为矩形,,均为等边三角形,,.
(1)过作截面与线段交于点,使得平面,试确定点的位置,并予以证明;
(2)在(1)的条件下,求直线与平面所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】给出下列五个命题:
①净三种个体按的比例分层抽样调查,如果抽取的个体为9个,则样本容易为30;②一组数据1、2、3、4、5的平均数、众数、中位数相同;③甲组数据的方差为5,乙组数据为5、6、9、10、5,那么这两组数据中较稳定的是甲;④已知具有线性相关关系的两个变量满足的回归直线方程为.则每增加1个单位,平均减少2个单位;⑤统计的10个样本数据为125,120,122,105,130,114,116,95,120,134,则样本数据落在内的频率为0.4其中真命题为( )
A. ①②④B. ②④⑤C. ②③④D. ③④⑤
查看答案和解析>>
科目: 来源: 题型:
【题目】下列有关命题的说法错误的是( )
A.若“p∨q”为假命题,则p,q均为假命题
B.“x=1”是“x≥1”的充分不必要条件
C.“sinx=”的必要不充分条件是“x=”
D.若命题p:x0∈R,x02≥0,则命题¬p:x∈R,x2<0
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆:的四个顶点围成的四边形的面积为,原点到直线的距离为.
(1)求椭圆的方程;
(2)已知定点,是否存在过的直线,使与椭圆交于,两点,且以为直径的圆过椭圆的左顶点?若存在,求出的方程:若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】2019年春节期间,我国高速公路继续执行“节假日高速公路免费政策”某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作区间,9:40~10:00记作,10:00~10:20记作,10:20~10:40记作.例如:10点04分,记作时刻64.
(1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);
(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X,求X的分布列与数学期望;
(3)由大数据分析可知,车辆在每天通过该收费点的时刻T服从正态分布,其中可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,可用样本的方差近似代替(同一组中的数据用该组区间的中点值代表),已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).
参考数据:若,则,,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com