相关习题
 0  263860  263868  263874  263878  263884  263886  263890  263896  263898  263904  263910  263914  263916  263920  263926  263928  263934  263938  263940  263944  263946  263950  263952  263954  263955  263956  263958  263959  263960  263962  263964  263968  263970  263974  263976  263980  263986  263988  263994  263998  264000  264004  264010  264016  264018  264024  264028  264030  264036  264040  264046  264054  266669 

科目: 来源: 题型:

【题目】设点,的坐标分别为,,直线,相交于点,且它们的斜率之积为-2,设点的轨迹是曲线.

1)求曲线的方程;

2)已知直线与曲线相交于不同两点(均不在坐标轴上的点),设曲线轴的正半轴交于点,若,垂足为,求证:直线恒过定点.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,直角梯形中,,,,四边形为矩形,.

1)求证:平面平面;

2)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】设抛物线的焦点为,点在抛物线上,.若以为直径的圆过点,则抛物线的焦点到准线距离为( )

A. 8B. 4或8C. 2D. 2或4

查看答案和解析>>

科目: 来源: 题型:

【题目】知函数

1)当时,求的单调区间;

2)设函数,若的唯一极值点,求

查看答案和解析>>

科目: 来源: 题型:

【题目】201912月,全国各中小学全体学生都参与了《禁毒知识》的答题竞赛,现从某校高一年级参加考试的学生中抽出60名学生,将其成绩(单位:分)整理后,得到如下频率分布直方图(其中分组区间为,,.

1)求成绩在的频率,并补全此频率分布直方图;

2)求这次考试成绩的中位数的估计值;

3)若从抽出的成绩在的学生中任选两人,求他们的成绩在同一分组区间的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为

(1)求椭圆C及圆O的方程;

(2)设直线l与圆O相切于第一象限内的点P

①若直线l与椭圆C有且只有一个公共点,求点P的坐标;

②直线l与椭圆C交于两点.若的面积为,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面为菱形,,侧棱底面,点的中点,作,交于点.

1)求证:平面

2)求证:

3)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】近期,某公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用表示活动推出的天数,表示每天使用扫码支付的人次(单位:十人次),统计数据如表1所示:表1:

1

2

3

4

5

6

7

6

11

21

34

66

101

196

根据以上数据,绘制了如图所示的散点图.

(1)根据散点图判断,在推广期内,均为大于零的常数)哪一个适宜作为扫码支付的人次关于活动推出天数的回归方程类型?(给出判断即可,不必说明理由);

(2)根据(1)的判断结果及表l中的数据,求关于的回归方程,并预测活动推出第8天使用扫码支付的人次;

(3)推广期结束后,车队对乘客的支付方式进行统计,结果如表2

表2:

支付方式

现金

乘车卡

扫码

比例

已知该线路公交车票价为2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客,享受7折优惠的概率为,享受8折优惠的概率为,享受9折优惠的概率为.根据所给数据以事件发生的频率作为相应事件发生的概率,估计一名乘客一次乘车的平均费用.

参考数据:

66

1.54

2.711

50.12

3.47

其中

查看答案和解析>>

科目: 来源: 题型:

【题目】随着人们经济收入的不断增加,个人购买家庭轿车已不再是一种时尚,车的使用费用,尤其是随着使用年限的增多,所支出的费用到底会增长多少,一直是购车一族非常关心的问题,某汽车销售公司做了一次抽样调查,并统计得出2009年出售的某款车的使用年限2009年记)与所支出的总费用(万元)有如表的数据资料:

使用年限

2

3

4

5

6

总费用

2.5

3.5

5.5

6.5

7.0

1)求线性回归方程;

2)若这款车一直使用到2020年,估计使用该款车的总费用是多少元?

线性回归方程中斜率和截距用最小二乘法估计计算公式如下:

,

查看答案和解析>>

科目: 来源: 题型:

【题目】分别是正方体的棱,,的中点,则下列命题中的真命题是__________(写出所有真命题的序号).

①以正方体的顶点为顶点的三棱锥的四个面中最多可以四个面都是直角三角形;

②点在直线上运动时,总有;

③点在直线上运动时,三棱锥的体积是定值;

④若是正方体的面,(含边界)内一动点,且点到点的距离相等,则点的轨迹是一条线段.

查看答案和解析>>

同步练习册答案