相关习题
 0  263863  263871  263877  263881  263887  263889  263893  263899  263901  263907  263913  263917  263919  263923  263929  263931  263937  263941  263943  263947  263949  263953  263955  263957  263958  263959  263961  263962  263963  263965  263967  263971  263973  263977  263979  263983  263989  263991  263997  264001  264003  264007  264013  264019  264021  264027  264031  264033  264039  264043  264049  264057  266669 

科目: 来源: 题型:

【题目】[选修4-5:不等式选讲]

已知函数f(x)=|2x﹣1|+|x+1|,g(x)=|x﹣a|+|x+a|.

(Ⅰ)解不等式f(x)>9;

(Ⅱ)x1∈R,x2R,使得f(x1)=g(x2),求实数a的取值范围

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)当时,讨论函数的单调性;

(2)当时,恒有,求实数的取值范围.

附:.

查看答案和解析>>

科目: 来源: 题型:

【题目】某书店销售刚刚上市的某高二数学单元测试卷,按事先拟定的价格进行5天试销,每种单价试销1天,得到如下数据:

单价x/

18

19

20

21

22

销量y/

61

56

50

48

45

1)求试销天的销量的方差和关于的回归直线方程;

附: .

2)预计以后的销售中,销量与单价服从上题中的回归直线方程,已知每册单元测试卷的成本是10元,为了获得最大利润,该单元测试卷的单价应定为多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知 .

1)若的充分不必要条件,求实数的取值范围;

(2)若为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知为抛物线上在轴下方的一点,直线与抛物线在第一象限的交点从左到右依次为,与轴的正半轴分别相交于点,且,直线的方程为.

(1)当时,设直线的斜率分别为,证明:

(2)求关于的表达式,并求出的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列五个命题:

①“”是“R上的增函数”的充分不必要条件;

②函数有两个零点;

③集合A={23}B={123},从AB中各任意取一个数,则这两数之和等于4的概率是

④动圆C即与定圆相外切,又与y轴相切,则圆心C的轨迹方程是

⑤若对任意的正数x,不等式 恒成立,则实数的取值范围是

其中正确的命题序号是_____

查看答案和解析>>

科目: 来源: 题型:

【题目】观察如图,则第__行的各数之和等于20172

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.在购进机器时,可以一次性额外购买次维修,每次维修费用300元,另外实际维修一次还需向维修人员支付上门服务费80元.在机器使用期间,如果维修次数超过购买的次时,则超出的维修次数,每次只需支付维修费用700元,无需支付上门服务费.需决策在购买机器时应同时一次性购买几次维修,为此搜集并整理了100台这种机器在三年使用期内的维修次数,得到下面统计表:

维修次数

6

7

8

9

10

频数

10

20

30

30

10

表示1台机器在三年使用期内的维修次数,表示1台机器维修所需的总费用(单位:元).

(1)若,求的函数解析式;

(2)假设这100台机器在购机的同时每台都购买8次维修,或每台都购买9次维修,分别计算这100台机器在维修上所需总费用的平均数,并以此作为决策依据,购买1台机器的同时应购买8次还是9次维修?

查看答案和解析>>

科目: 来源: 题型:

【题目】对于函数f(x),若a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”.已知函数f(x)=是“可构造三角形函数”,则实数t的取值范围是(  )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在几何体中,底面四边形是边长为4的菱形,平面,且.

(1)证明:平面平面

(2)求三棱锥的体积.

查看答案和解析>>

同步练习册答案