科目: 来源: 题型:
【题目】十三届全国人大二次会议于2019年3月5日在京召开.为了了解某校大学生对两会的关注程度,学校媒体在开幕后的第二天,从学生中随机抽取了180人,对是否收看2019年两会开幕会情况进行了问卷调查,统计数据得到列联表如下:
收看 | 没收看 | 合计 | |
男生 | 40 | ||
女生 | 30 | 60 | |
合计 |
(1)请完成列联表;
(2)根据上表说明,能否有99%的把握认为该校大学生收看开幕会与性别有关?(结果精确到0.001)
附:,其中.
0.10 | 0.05 | 0.025 | 0.01 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目: 来源: 题型:
【题目】中国仓储指数是反映仓储行业经营和国内市场主要商品供求状况与变化趋势的已套指数体系.如图所示的折线图是2017年和2018年的中国仓储指数走势情况.根据该折线图,下列结论中不正确的是( )
A. 2018年1月至4月的仓储指数比2017年同期波动性更大
B. 这两年的最大仓储指数都出现在4月份
C. 2018年全年仓储指数平均值明显低于2017年
D. 2018年各仓储指数的中位数与2017年各仓储指数中位数差异明显
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C:1左右焦点为F1,F2直线(1)xy0与该椭圆有一个公共点在y轴上,另一个公共点的坐标为(m,1).
(1)求椭圆C的方程;
(2)设P为椭圆C上任一点,过焦点F1,F2的弦分别为PM,PN,设λ1λ2,求λ1+λ2的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面角坐标系中,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,将曲线向左平移个单位长度得到曲线.
(1)求曲线的参数方程;
(2)已知为曲线上的动点, 两点的极坐标分别为,求的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的两个焦点分别为、,,点在椭圆上,且的周长为
(Ⅰ)求椭圆的方程;
(Ⅱ)若点的坐标为,不过原点的直线与椭圆相交于,两点,设线段的中点为,点到直线的距离为,且,,三点共线,求的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知关于x的一元二次函数f(x)=ax2﹣2bx+8.
(1)设集合P={1,2,3}和Q={2,3,4,5},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间(﹣∞,2]上有零点且为减函数的概率?
(2)设集合P=[1,3]和Q[2,5],分别从集合P和Q中随机取一个实数作为a和b,求函数y=f(x)在区间(﹣∞,2]上有零点且为减函数的概率?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C:1(a>b>0),椭圆C上的点到焦点距离的最大值为9,最小值为1.
(1)求椭圆C的标准方程;
(2)求椭圆C上的点到直线l:4x﹣5y+40=0的最小距离?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,2012年春节,摄影爱好者S在某公园A处,发现正前方B处有一立柱,测得立柱顶端O的仰角和立柱底部B的俯角均为,已知S的身高约为米(将眼睛距地面的距离按米处理)
(1) 求摄影者到立柱的水平距离和立柱的高度;
(2) 立柱的顶端有一长2米的彩杆MN绕中点O在S与立柱所在的平面内旋转.摄影者有一视角范围为的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com